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CS1Q Computer Systems
Lecture 1

Prof. Chris Johnson
S141 Lilybank Gardens, Department of Computing Science, University of Glasgow, Scotland.

johnson@dcs.gla.ac.uk. http://www.dcs.gla.ac.uk/~johnson

Notes prepared by Dr Simon Gay
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Aims

• To understand computer systems at a 
deeper level: general education for life 
in a technological society.

• Foundation for further CS modules:
– Computer Systems 2

– Operating Systems 3

– Networked Systems Architecture 3

– Computer Architecture 4
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Books
• Essential: Computer Science 

Illuminated by N. Dale & J. Lewis.

• Supplementary notes will be produced.
• More detail on digital logic: one of

– Computers from Logic to Architecture by 
R. D. Dowsing, F. W. D. Woodhams & I. 

Marshall (also useful for Level 2 CS)
– Digital Fundamentals by T. Floyd
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Other Reading
• The New Turing Omnibus by A. K. Dewdney

– a tour through many and varied CS topics

• Gödel, Escher, Bach: An Eternal Golden Braid by 
D. Hofstadter

– either love it or hate it: includes logic,
computability, programming fundamentals,
and much more

• Code by Charles Petzold
– excellent explanation of computing fundamentals
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Course Plan
Preparatory reading will be assigned for each lecture -
some is necessary, some is for general interest.

Look at Moodle (navigate from the Level 1 CS
homepage) to find out the preparatory reading and other
Information.

You will probably find it useful to make some notes during
lectures.
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A Hierarchical View

Global computing: the Internet

Networks and distributed computing

Application on a single computer

Operating System

Architecture

Digital Logic

Electronics

Physics

How are services
like email provided? 

CS1P

How does the operating
system support applications?

How do we design a
machine that can 
execute programs?

What are the
building blocks?

Not much about
these levels!
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Information Processing
• Everything that computers do can be 

described as information processing.

• Information is also processed by other 
devices, e.g. CD player, television, video 
recorder, …

• Computers are programmable: the way 
they process information can be changed.

• Computers represent information digitally.
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Digital Information

• Digital means represented by numbers. 
Ultimately, binary numbers (0, 1) are 
used.

• The alternative is an analog
representation, meaning that 
information is represented by a 
continuously variable physical quantity.
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Examples of Analog Devices

• Traditional clock with hands
• Car speedometer with a needle
• Video tape recorder
• Record player (remember those?)

• Radio and television
• Traditional film camera
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Examples of Digital Devices

• Digital watch
• Car speedometer with a digital display
• DVD player/recorder
• CD or MP3 player

• Digital radio, digital television
• Digital camera
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The Binary System
The decimalor base 10system uses digits 0,1,2,3,4,5,6,7,8,9.
The column valuesare powers of 10:

1100 101000

2 4 7 6 means 0123 106107104102 ×+×+×+×

The binaryor base 2system uses digits 0,1.
The column valuesare powers of 2:

14 28

1 1 0 1 means 1321202121 0123 =×+×+×+×

102 131101 =
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Why is binary used?

• Because it’s easy to distinguish 
between two states:
– high or low voltage

– presence or absence of electric charge

– a switch in the on or off position
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Bits, Bytes and Words
A single binary digit is called a bit. The value of a bit is 0 or 1.

A group of 8 bits is called a byte.

1 0 1 10101

There are 256 different bytes, because 82256=
Larger collections of bits are called words: typically 16, 32 or 64.

byte byte16 bit word:

32 bit word: bytebytebytebyte

64 bit word: byte byte bytebytebytebytebytebyte
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How many bits?
• A computer might be described as “32 bit”, 

which means that it uses 32 bit words.

• More bits means that more information can 
be processed at once; also, more memory 
can be used.

• Technology is moving from 32 to 64 bits
(although it’s not clear that 64 bits are
necessary for most applications). 
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How many different values?

An     bit word represents one of         different values. n n2

Bits Values Approx.
8

32
24
16

64

256
65 536

16 777 216
4 294 967 296

gigantic number

2102×
5106×

710
9104×
19102×

These values might be interpreted as numbers
(e.g. for 8 bits, a number from 0 to 256)
or in other ways (e.g. as part of an image).
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Can all information be 
digitized?

• Yes, but we have to decide on a fixed number of bits, 
resulting in loss of information.

• Example: if a digital speedometer stores the speed in 1 
byte, then only 256 different speeds can be shown 
(compared with an infinity of needle positions or speeds).

• This is enough for 0 - 128 mph in steps of 0.5 mph.
• Are we interested in any more accuracy? How accurately 

could we judge the position of the needle? How 
accurately is the speed being measured (physically) in 
the first place?
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Why Digital?
• So that all kinds of information can be stored and 

processed in a uniform way. Examples:

– video and audio information can be stored on a 
DVD (or a magnetic disc, or a computer memory) 
and replayed using suitable software

– any digital information can be compressed or 
encrypted using standard algorithms

• To exploit the distinguishability of 0 and 1

– e.g. digital radio suffers less from interference, and 
bandwidth can be increased
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Information Representation:
Numerical

Positive integers: straightforward, use binary
• known range: easy, fixed number of bits for each number
e.g. 16 bits give us the range 0..65535
(implemented in hardware; details later)

• unlimited size: more complicated, work with sequences
of bytes (implemented in software)

Positive and negative integers: use two’s complement(later)

Real numbers(non-integers): complicated, some details
next lecture.
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Information Representation:
Text

Fix the set of possible characters, decide on the appropriate number of
bits, and assign a binary number to each character. Text is represented
by a sequence of characters. 

ASCII: the standard for many years. 128 characters, 7 bits each.
Later extended to an 8 bit format to include accents and more symbols.

ASCII is biased towards the English language, and is being replaced by
Unicode, a 16 bit format with 65536 characters.

Documents are often represented in formats which are not plain text.
E.g. Microsoft Word files and PDF files contain formatting information,
images, tables etc.

Lecture 1 CS1Q Computer Systems 20

Data Compression
It is often useful to compresslarge data files. The book describes three
kinds of compression:
• keyword encoding
• run length encoding
• Huffman encoding
Another is Lempel-Ziv compression: similar to keyword encoding, but
all repeated strings become keywords.

These are all examples of losslessor exactcompression: decompressing
takes us back where we started.

Inexactor lossycompression is often used for image and sound files:
decompression does not result in exactly the original information, but
this can be acceptable if the differences are too small to notice.
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Run Length Encoding Puzzle
How does this sequence continue? 1

11
21

1211

111221

312211

13112221
…

Each line is a run length encoding of the line above. The increasing
length of the lines illustrates the fact that run length encoding is not
good at compressing data with many short runs.
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Information Representation:
Images

Straightforward idea: the bitmap, a rectangular grid of pixels(picture
elements). One bit per pixel gives a black and white image.

0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

The whole image can be represented as a sequence of bytes: this part
(in decimal) is 0, 31, 8, 8, 8, 8, 8.
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Information Representation:
Images

For more colours, use more bits per pixel. Here, for four colours,
two bits are needed per pixel.

The more pixels we use, and the more colours, the more detailed and
accurate the image can be (and the more space is needed to store it).
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Digital Photography
An image is represented digitally by a grid of pixels.

The accuracy of the
colours depends on the
number of bits per pixel
(but how many colours can
the eye perceive?)
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Image Formats
Up to 24 bits per pixel (giving over 16 million colours) is common.
A compromise is to use a colour palette: for a particular image, select
(say) 256 colours from the full range, then use 8 bits per pixel.

Compression is important because images can be large files. Some
forms of lossless compression can work well: e.g. run length encoding
is good if there are large blocks of the same colour; this is true for
some kinds of image.

GIF (Graphics Interchange Format) uses a bitmap representation with
8 bit colour (using a palette) and Lempel-Ziv-Welch compression
(lossless). It’s particularly good for line drawings.
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Image Formats
The JPEG (Joint Photographic Experts Group) format uses the
discrete cosine transformationto convert a bitmap into a representation
based on combinations of waveforms. This gives lossybut adjustable
compression. A JPEG image must be converted back into a bitmap in
order to be displayed on screen or printed.

JPEG is designed for good compression of images with smooth
colour variations - for example, many photographs. The inaccuracy of
the compression tends to smooth things out even more. JPEG is not so
good for images with sharp edges, such as line drawings.
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Information Representation:
Sound

Sound is a waveform:

time

strength

and converted into a sequence of numbers (as accurately as we want).
which can be sampled at some (suitably high) frequency

Playing the numbers through a digital-analog converter recovers sound.
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Information Representation:
Sound

The raw digital representation of the sound must be stored in a suitable
format. Two formats are important at the moment:

Audio CD: an exact encoding, suitable for recording onto
compact disk.

MP3(Moving Picture Experts Group, audio layer 3): uses lossy
compression to significantly reduce the size of audio files. The
information lost during compression corresponds to parts of the sound
which would not be (very) noticeable to the human ear. Lossless
compression (Huffman encoding) is then used for further shrinkage.

MP3 representation is about one tenth of the size of audio CD.
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Binary Numbers
We’ll look at some details of the representation of numbers in binary.
• unsigned integers (i.e. positive integers; this is probably revision)
• signed integers (i.e. positive and negative integers)
• fractions
• floating point numbers

It’s important to understand the binary representation of
unsigned and signed integers.

We won’t be doing any work with floating point numbers, but it’s
interesting to see some of the complexities.
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Converting Binary to Decimal
Converting binary numbers to decimal is easy: just add up
the values of the columns which contain 1. 

1
128

1
1

0
2

1
4

0
8

1
16

1
32

0
64

= 181

0
128

0
1

0
2

1
4

1
8

0
16

1
32

1
64

= 108

1
128

1
1

1
2

1
4

1
8

1
16

1
32

1
64

= 255
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Converting Decimal to Binary
Method 1

First work out how many bits are needed.

If the number is at least       but less than      
then          bits are needed.

n2 12 +n

1+n

Examples:

103 is at least 64 but less than 128; it needs 7 bits

32 is at least 32 but less than 64; it needs 6 bits

257 is at least 256 but less than 512; it needs 9 bits

1000 is at least 512 but less than 1024; it needs 10 bits
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Converting Decimal to Binary
Method 1

Work out the column values for the number of bits needed.
Example: 103, using 7 bits. 

1
1

1
2

1
4

0
8

0
16

1
32

1
64

Starting from the left, enter a 1 if the number is at least
as big as the column value; otherwise 0. If 1 is entered,
subtract the column value. Repeat for each column.

More bits can be used: just put zeros in front.

1
1

1
2

1
4

0
8

0
16

1
32

1
64

0
128
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Converting Decimal to Binary
Method 2

This method produces the binary digits from right to left.
If the number is odd, enter 1 and subtract 1; if the number
is even, enter 0. Divide the number by 2 and repeat.

Example: 237

1
128

1
1

0
2

1
4

1
8

0
16

1
32

1
64

Check: 128+64+32+8+4+1 = 237.
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Hexadecimal
Hexadecimal, also known as hex, is base 16.
Each digit represents a number from 0 to 15.
The letters A to F (or a to f) are used for digits 10 to 15.

3 C 9
256 16 1

9691691612163 012 =×+×+×=

Each hex digit corresponds to 4 bits:

0000
0 7654321

0111011001010100001100100001

1000
8 FEDCBA9

1111111011011100101110101001
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Hexadecimal

A hex number is best thought of as an abbreviation for a
binary number.

The number of bits can easily be seen (4 times the number
of hex digits) but the number itself is shorter.

A 3 5 E

1010 111001010011
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Addition in Binary

Just like in decimal: work from right to left, carrying to the next
column if necessary.

1 100
1

1 111
1

1 1101 010 171

1 011 +0 001 78

249
1

carry
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Working Within a Word Size

1 100
1

0 000
1

1 1101 010 171

1 011 +0 101 94

9 instead of 265

Usually a computer does addition on words of a fixed size.
A carry beyond the leftmost column is an overflow, which might
be detectable, and the result is calculated modulo 256(with 8 bits).

11111

overflow
265 divided by 256 = 1 remainder 9

With 16 bit words: addition modulo 65536, etc.
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Unsigned or Signed?
Everything we have said so far applied to unsignednumbers: we are
simply working with positive integers.

If we want to work with both positive and negative integers then we
need to be able to distinguish between them: we need signednumbers.

We will now look at the representation of negative numbers in binary.
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Negative Numbers in Binary
We need a representation of negative numbers in binary. On paper
we might write

210110− for
1022−

but how do we represent the minus sign within a byte or word?

The obvious idea is the sign-magnitude representation:

1 0110100

1 means negative,
0 means positive
(the sign)

the normal representation of 22
(the magnitude)
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Sign-Magnitude Doesn’t Work
Unfortunately the sign-magnitude representation makes arithmetic
difficult. Try -3 + 1 in a 4 bit sign-magnitude representation:

1 001
11

1 110 3−
0 100 + 1

4− WRONG!

Straightforward addition of signed numbers gives incorrect results.
Another problem is that there are two representations of zero:

0 0000000 0+=

1 0000000 0−=
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2s Complement Representation
Positive numbers have the normal binary representation.

To work out the representation of a negative number:

invert each bit (exchange 0 and 1)
add 1 to the result, ignoring overflow

Example: 8 bit 2s complement representation of 22−
0 0110100

1 1001011

invert

1 0101011

add 1
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Facts about 2s Complement
Normal addition works for both positive and negative numbers.

1 101

0 100

1 011

+

1

3−
1
2− CORRECT!

1100

invert

0011

1011

add 1

0100

invert

1011

0111

add 1
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Facts about 2s Complement

There is no difference between positive zero and negative zero.

0 0000000

invert

1 1111111

0 0000000

add 1, ignoring overflow

The leftmost bit is still a sign bit: 0 for positive, 1 for negative.

Whatever the word size, -1 is represented by a word full of 1s.
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Facts about 2s Complement
Half the bit patterns represent positive numbers, half negative.
With 8 bits we get numbers from -128 to +127.

Here’s how it works with 3 bits:

000

111

110

101 100

011

010

001
0 1

2

3

45

6

7

0 1

2

3

-4-3

-2

-1

bit pattern

meaning as unsigned number

meaning as
2s complement number
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Converting to and from binary
When converting from decimal to binary it is important to know
whether we are producing a signed or unsigned representation. This is
usually obvious: if we are given a negative decimal number then we
must use the signed (two’s complement) representation.

When converting from binary to decimal it is important to know
whether the given number is signed or unsigned.

10101010  as an unsigned binary number means 170 in decimal.

10101010  as a signed binary number means  -86 in decimal.

Some programming languages provide both signed and unsigned
integer types, and confusion can result. (Example: C)
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Real Numbers in Binary
Real numbers (i.e. non-integers) can be represented in binary in the
same way as in decimal: the column values keep halving as we move
to the right.

0
128

1
1

1
2

0
4

1
8

0
16

0
32

0
64

1011 … … 
1/2 1/4 1/8 1/16

Example: 1011.1101 = 11.8125  

The familiar issues of decimal expansions also arise in binary:
different numbers have expansions of different lengths, some
have recurring or non-recurring infinite expansions, and so on.

2 10
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Floating Point Numbers
For computational purposes we need a fixed-size representation of
real numbers. Fixing the number of digits before and after the 
binary point would be too inflexible, so we use floating pointnumbers.

The basic idea is the same as standard scientific notationin decimal:

2.5 × 10 =  2500
3.4 × 10 =  0.000034

but we use powers of 2 instead of powers of 10, and express
everything in binary:

1.01 × 2 (binary) = 1.25 × 16 (decimal) = 20.

mantissaor fraction exponent

always 2

2

-5

100
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Floating Point Numbers
A particular floating point format will use a fixed number of bits for the
mantissa, a fixed number of bits for the exponent, and one extra bit to
represent the sign (0 for positive, 1 for negative) of the overall number.

Example: let’s use a 2 bit mantissa and a 3 bit exponent

The 2 bit mantissa gives 4 possibilities: 00, 01, 10, 11 and we will
interpret these as 0.00, 0.01, 0.10 and 0.11 (in binary),
i.e. 0, 0.25, 0.5 and 0.75 (in decimal).

The 3 bit exponent gives 8 possibilities and we will interpret these as
-4 … +3.
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Example Floating Point Format

0.015625 0.03125 0.0625 0.125 0.25 0.5 1 2

0 0 0 0 0 0 0 0

0.046875 0.09375 0.01875 0.375 0.75 1.5 3 6

0.03125 0.0625 0.125 0.25 0.5 1 2 4

exponent2
1 2 4 81/21/41/81/16mantissa

0
0.25
0.5
0.75

Points to note:
• the 32 combinations only give 18 different values
• the values are not evenly distributed
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IEE Floating Point Format

0.0625 0.3125 0.625 1.25 2.5 5 10 NaN

0 0.25 0.5 1 2 4 8 ∞

0.1875 0.4375 0.875 1.75 3.5 7 14 NaN

0.125 0.375 0.75 1.5 3 6 12 NaN

exponent

100 101 110 111011010001000mantissa

00
01
10
11

The IEE floating point format avoids multiple representations, and
represents some special values (NaN, ∞) to help with error detection.
The exponent is interpreted differently, and the interpretation of the
mantissa depends on the value of the exponent. Here’s how it would
look with a 2 bit mantissa and 3 bit exponent.
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Floating Point Numbers
However many bits we use for the mantissa and exponent
(IEE single precision: 23 and 8; IEE double precision: 52 and 11)
the following points are always true:

Only a finite set of numbers is available, whereas in
mathematical reality any range contains an infinite set of real numbers.

A real number is represented by the nearest floating point number;
usually this is only an approximation.

Floating point arithmetic does not correspond exactly to
mathematical reality: numbers of different sizes do not mix well.
E.g. in the IEE example, 12 + 0.25 = 12. 

Usually it is possible to be accurate enough for a given purpose, but:
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Floating Point Mathematics
Define the sequence 

ia by

2

11
0 =a

11

61
1 =a

nnn
n aaa

a
1

1

30001130
111

−
+ +−=

In anyfloating point format, no matter how many bits are used,
the sequence converges to 100.

In reality it converges to 6.

CS1Q Computer Systems
Lecture 3
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Where we are

Global computing: the Internet

Networks and distributed computing

Application on a single computer

Operating System

Architecture

Digital Logic

Electronics

Physics

How do we design a
machine that can 
execute programs?
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Structure of a Computer

CPU
MEM-
ORY

DIS-
PLAY

DISK more...

buses

CPU - Central Processing Unit; microprocessor; e.g. Pentium 4
Memory - stores both programs and data
Peripherals - display, disk, keyboard, modem, printer, …
Disk - larger, slower and more permanent than memory
Buses - pathways for information
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CPU Architecture

• The CPU is in control. It executes individual instructions.
• The CPU does not execute program statements directly.
• The CPU has its own machine language which is simpler, 

but general enough that programs can be translated into it.
• Why?

– The CPU does not force the use of any one high-level 
language.

– It’s more efficient to design and manufacture a general-
purpose machine, rather than one for each language.
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Which CPU?
• A wide variety of CPUs are in use today:

– The Intel family (486, Pentium, Pentium 2, P3, P4,…)
• popular in desktop computers

– The 64-bit Intel family (Itanium)
• popular in high-performance workstations and servers

– The PowerPC range
• used in Apple computers: iMac, PowerBook, etc

– The ARM range
• used in handheld computers, embedded systems

– DSP (digital signal processors), integrated 
microcontrollers, ...

• Most of the world’s CPUs are not in PCs!
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The IT Machine

• A simplified CPU, whose design shares many 
features of modern real CPUs.

• We can understand its operation in detail, 
without getting bogged down in complexity.

• We have a software emulator, so we can run 
programs in the lab.

• We’ll compare the IT machine with some real 
CPU designs later.
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Registers: The ITM’s Variables
The ITM has 16 registers, which are like variables. 
Each register can store a 16 bit value. Their names are R0 - Rf.

LDVAL and ADD instructions allow basic calculations.

R1 := 1;
R2 := 2;
R3 := R1 + R2;

LDVAL  R1,$0001
LDVAL  R2,$0002
ADD       R3,R1,R2

combination of addition 
and assignment

an immediate value

(Register R0 always stores the value 0 and cannot be changed.)



CS1Q Handout

16

Lecture 3 CS1Q Computer Systems 61

Working with Registers

Rd 0
Rc 0
Rb -600
Ra 1254
R9 1
R8 0
R7 0
R6 2
R5 -56
R4 134

Rf -5
Re 3

R0 0
R1 13
R2 -2
R3 0

Rd 0
Rc 0
Rb -600
Ra 1254
R9 1
R8 0
R7 0
R6 2
R5 -56
R4 134

Rf -5
Re 3

R0 0
R1 13
R2 -2
R3 11

ADD   R3,R1,R2

ALU

Lecture 3 CS1Q Computer Systems 62

The ALU

• The Arithmetic and Logic Unit is a 
subsystem of the CPU.

• The ALU carries out operations such as 
addition, subtraction, comparisons, … 
when required by instructions such as 
ADD.
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Memory
• The registers are not sufficient forstoring large 

amounts of data. So the ITM has memory.
• The memory is like an array of 16 bit words. Each 

location(element) has an address(index).

• The ITM is a 16 bit machine, so a memory address 
is a 16 bit word. Therefore the maximum memory 
size is 65536 words.

• As well as storing data, the memory stores the 
instructions which make up a program. 

• In practice, (most of) the memory is outside the CPU.
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Assembly Language and
Machine Language

Instructions such as   ADD   R3,R1,R2    are in assembly language.
Assembly language is a human-readable form of machine language.

Machine language is a binary representation of instructions.

ADD   R3,R1,R2

0011 0011 0001 0010

3 3 1 2

It is the machine language form which is stored in memory.

assembly language

machine language (binary)

machine language (hex)
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The Stored Program 
Computer

• Storing the program in memory, in the same 
way as data, is one of the most important 
ideas in computing.

• It allows great flexibility, and means that 
programs which manipulate programs (e.g. 
compilers) are conceptually no different from 
programs which manipulate data.
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Execution of a Program
Instructions are executed in sequence, starting with the instruction
in memory location 0.

A special register, the program counter(PC), stores the address of
the instruction being executed.

R1 := 5;
R2 := 3;
R3 := 2*R1 + R2;

LDVAL  R1,$0005
LDVAL  R2,$0003
LDVAL  R4,$0002
MUL       R5,R1,R4
ADD       R3,R5,R2

Example:
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Rd 0
Rc 0
Rb -600
Ra 1254
R9 1
R8 0
R7 0
R6 2
R5 -56
R4 134

Rf -5
Re 3

R0 0
R1 13
R2 -2
R3 0

Registers

21000000

Memory

Address Contents

00050001
22000002

33520007

00030003
24000004
00020005
65140006

00000008

0000000c
0000000b
0000000a
00000009

0000000f
0000000e
0000000d

ALU

0000
PC

LDVAL  R1,$0005

Instruction
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Assembly Language 
Programming

• It is rarely necessary to program in assembly 
language.

• Assembly language programs are produced 
by systematic (and automatic) translation of 
programs in high level languages (e.g. Ada).

• We will look at how some common high level 
constructs are translated.

• Compiler writers must understand assembly 
language.

• CPUs are designed with compilers in mind.
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Using Memory
To use the memory, we must refer to an address. In assembly
language we can use a label instead of a numerical address.
A label is just a name, similar to a variable name.

LOAD    R3, x[R0]

any register
label of memory location

explain later

If we think of the label x as the name of a variable (the value of this
variable is stored in the memory location labelled by x) this means:

R3 := x;
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Writing to Memory
The instruction STORE, with a similar format to LOAD, changes
the contents of a memory location.

STORE    R3, x[R0]

any register
label of memory location

explain later

Again thinking of x as the name of a variable, this means:

x := R3;
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Example
We can translate a fragment of code into assembly language:

x := 5;
y := 3;
z := 2*x + y;

Declare the labels x, y, z, initialising the variables to 0:

x DATA $0000
y DATA $0000
z DATA $0000

DATA is not a machine language instruction. It just tells the
assembler(which translates assembly language to machine language)
to allocate space in memory.
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Example
Now translate the statements. We need to use registers, because
only the LOAD and STORE instructions can access memory.

LDVAL R6, $0005
STORE R6, x[R0]
LDVAL R6, $0003
STORE R6, y[R0]
LOAD R1, x[R0]
LOAD R2, y[R0]
LDVAL R4, $0002
MUL R5, R1, R4
ADD R3, R5, R2
STORE R3, z[R0]

x := 5;

y := 3;

R1 := x;

R2 := y;

R5 := x*2;

R3 := x*2+y;

z := x*2+y;
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A Complete Program
LDVAL R6, $0005
STORE R6, x[R0]
LDVAL R6, $0003
STORE R6, y[R0]
LOAD R1, x[R0]
LOAD R2, y[R0]
LDVAL R4, $0002
MUL R5, R1, R4
ADD R3, R5, R2
STORE R3, z[R0]
CALL exit[R0]

x DATA $0000
y DATA $0000
z DATA $0000

stops execution
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Program and Data in Memory
26000000
00050001
76000002

00150007

00140003
26000004
00030005
76000006

11000008

2400000c
0015000b
1200000a
00140009

3352000f
6514000e
0002000d

73000010
00160011
e0000012
fffd0013

00000014
00000015
00000016

x

y

z
These locations are data,
not part of the program.

CALL exit[R0]

LOAD R2, y[R0]

1 2 0 0 0015

calculated by the assembler

some instructions are
only one word long
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Optimizations

• There are ways of improving this program by 
making it shorter.

• Compilers use a variety of techniques to 
produce optimized (as good as possible)  
code.

• We won’t worry about this issue - we’ll just 
concentrate on a straightforward and 
systematic translation of simple Ada 
statements into assembly language.

CS1Q Computer Systems
Lecture 4
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What’s Missing?
So far, we can write a simple sequence of instructions which are
executed from the beginning to the end.

This is not sufficient to translate conditional statementsor loops.
In both cases, some statements may or may not be executed,
depending on a condition.

if x>5
then y := 2
else z := 3
endif

execute just one
of these statements

while x < 10 do
begin

y := y+1;
x := x+1;

end;either execute these
statements, or end loop

A loop requires the ability to return to a previous point.
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Unconditional Jump
The JUMP instruction causes execution to jump to a different
instruction.

JUMP   label[R0]

label of a memory location explain soon...

Executing this JUMP instruction sets the program counter (PC)
to label instead of to the address of the next instruction.

Example: LDVAL R1, $0001
LDVAL R2, $0000

loop ADD R2, R2, R1
JUMP loop[R0]
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Conditional Jumps
The ITM has two conditional jumpinstructions.

JUMPT    R1, label[R0]

jump if true any register

if R1 = 1
then jump to label
else continue to next instruction

JUMPF    R1, label[R0]

jump if false any register

if R1 = 0
then jump to label
else continue to next instruction

Think of 1 as a representation of the boolean value true,
and 0 as a representation of the boolean value false.

Lecture 4 CS1Q Computer Systems 80

Comparison Operators

CMPEQ   R1, R2, R3compare equal

any registers

if R2 = R3
then R1 := 1
else  R1 := 0

CMPLT   R1, R2, R3compare less

any registers

if R2 < R3
then R1 := 1
else  R1 := 0

CMPGT   R1, R2, R3compare greater

any registers

if R2 > R3
then R1 := 1
else  R1 := 0
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Translating if-then-else
Using a combination of conditional and unconditional jumps,
we can translate an if-then-else statement into assembly language.

if  R1 < R2
then  statements1
else   statements2
end if;
more statements

CMPLT R3, R1, R2
JUMPF R3, else[R0]
translation of statements1
JUMP end[R0]

else translation of statements2
end translation of more statements

jump past the elsebranch

if we shouldn’t execute the
thenbranch, jump past it
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Translating a while loop
Again using conditional and unconditional jumps, we can translate
a while loop into assembly language.

while  R1 < 10  loop
statements
end loop;
more statements

loop LDVAL R2, $000a
CMPLT R3, R1, R2
JUMPF R3, end[R0]
translation of statements
JUMP loop[R0]

end translation of more statements

jump back to test the
condition again

if we shouldn’t execute the
loop body, jump past it
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Example: Sum of Integers
The following code calculates, in s, the sum of the integers from
1 to n.

s := 0;
while n > 0 loop

s := s + n;
n := n - 1;

end loop;

We can translate this code systematically into assembly language.
First we’ll do it using registers for the variables s and n.
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Translating to Assembly Language
We will use register R1 for the variable n, and R2 for the variable s.

s := 0;
while n > 0 loop

s := s + n;
n := n - 1;

end loop;

LDVAL R2, $0000
loop LDVAL R3, $0000

CMPGT R4, R1, R3
JUMPF R4, end[R0]
ADD R2, R2, R1
LDVAL R5, $0001
SUB R1, R1, R5
JUMP loop[R0]

end
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Optimizations
A few simple techniques can make this code shorter and faster.
We won’t worry about optimization when writing code by hand,
but a good compiler uses many optimization techniques.

Register R0 always holds 0 and can be used whenever the
value 0 is needed.

Instead of LDVAL R3, $0000
CMPGT R4, R1, R3

we can write CMPGT R4, R1, R0
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Optimizations
In this program, R5 is just used to hold the value 1 so that it can be
subtracted from R1. We can just set R5 to 1 at the beginning, 
instead of doing it in every iteration of the loop. 

LDVAL R2, $0000
loop LDVAL R3, $0000

CMPGT R4, R1, R3
JUMPF R4, end[R0]
ADD R2, R2, R1
LDVAL R5, $0001
SUB R1, R1, R5
JUMP loop[R0]

end

LDVAL R2, $0000
LDVAL R5, $0001

loop CMPGT R4, R1, R0
JUMPF R4, end[R0]
ADD R2, R2, R1
SUB R1, R1, R5
JUMP loop[R0]

end

This is called code hoisting. Moving code out of a loop increases speed.
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Storing Variables in Memory

s := 0;
while n > 0 loop

s := s + n;
n := n - 1;

end loop;

LDVAL R2, $0000 
STORE R2, s[R0]

loop LOAD R1, n[R0]
LDVAL R3, $0000
CMPGT R4, R1, R3
JUMPF R4, end[R0]
LOAD R1, n[R0]
LOAD R2, s[R0]
ADD R2, R2, R1
STORE R2, s[R0]
LDVAL R5, $0001
LOAD R1, n[R0]
SUB R1, R1, R5
STORE R1, n[R0]
JUMP loop[R0]

end
s DATA 0000
n DATA ????

Lecture 4 CS1Q Computer Systems 88

Optimizations
• Again there are ways of making this program 

shorter or faster.

• The most obvious is to transfer s and n into 
registers at the beginning, do all the calculation, 
then transfer the final values back to memory.

• Working in registers is faster, but only a limited 
number are available. The compiler must decide 
which variables to store in registers and which in 
memory.

• This requires analysis of when registers can be 
reused.
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Example: Multiplication
The ITM has an instruction for multiplication, but if it didn’t, we
could easily write a program for it.

To multiply a by b, leaving the result in c: (assuming b is positive)

c := 0;
while b > 0 loop

c := c + a;
b := b - 1;

end loop;

Multiplication is just repeated addition.
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Multiplication

% This is a comment
% R1 = a, R2 = b, R3 = c, R4 = 1

LDVAL R3, $0000 % c := 0
LDVAL R4, $0001 % R4 := 1

loop CMPGT R5, R2, R0 % R5 := (b > 0)
JUMPF R5, end % if not(b > 0) then exit loop
ADD R3, R3, R1 % c := c + a
SUB R2, R2, R4 % b := b - 1
JUMP loop[R0] % go to top of loop

end

c := 0;
while b > 0 loop

c := c + a;
b := b - 1;

end loop;

Lecture 4 CS1Q Computer Systems 91

Using Memory Locations
We have been writing references to memory locations in the form

label[R0]

Examples:
LOAD R1, label[R0]
STORE R1, label[R0]

to transfer data
to and from memory

JUMP label[R0]
JUMPT label[R0]
JUMPF label[R0]

to jump to a different
point in the program

It’s time to explain exactly what this means: why is R0mentioned
when we are just interested in the memory location label?
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Indexed Addressing
The general form of a reference to a memory location is

x[R]

where x is a label and R is any register. This refers to the
memory location at address x + R.

This is called indexed addressing. x is called the baseand
R is called the index.

Up to now we have just used R0, whose value is always 0.
x[R0] just refers to the memory location at address x.

By using other registers, we can implement arrays.
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Indexed Addressing and Arrays
LDVAL R1, $0005
LDVAL R2, $0002
STORE R1, a[R2]

a DATA $0000
DATA $0000
DATA $0000
DATA $0000
...

address is a+0

address is a+1

address is a+2

address is a+3

a sequence of memory
locations, starting at
address a

R1 := 5;

R2 := 2;

a[R2] := R1;

refers to address a+R2 = a+2
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Array and While Loop
% R1 = i, R2 = 10, R3 = 1

LDVAL R1, $0000 % i := 0;
LDVAL R2, $000a % R2 := 10;
LDVAL R3, $0001 % R3 := 1;

loop CMPLT R4, R1, R2 % R4 := (i < 10);
JUMPF R4, end[R0] % if not (i < 10) then exit loop;
STORE R1, a[R1] % a[i] := i;
ADD R1, R1, R3 % i := i + 1;
JUMP loop[R0] % go to top of while loop;

end

i := 0;
while i < 10 loop

a[i] := i;
i := i + 1;

end loop;
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Largest Element of an Array
Find the largest value in an array a, assuming that the end of the array
is marked by the value -1. 

max := a[0];
i := 1;
while a[i] <> -1 loop

if a[i] > max
then max := a[i];
end if;
i := i + 1;

end loop;

the first element is a[0]

max is the largest value
found so far
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Largest Element of an Array
% R1 = max, R2 = i, R3 = -1, R4 = 1, R5 = a[i]

LDVAL R3, $ffff   % R3 := -1
LDVAL R4, $0001 % R4 := 1
LOAD R1, a[R0]  % max := a[0] 
LDVAL R2, $0001 % i := 1

loop LOAD R5, a[R2] % R5 := a[i]
CMPEQ R6, R5, R3 % R6 := (a[i] = -1)
JUMPT R6, end[R0] % if a[i] = -1 then exit loop
CMPGT R7, R5, R1 % R7 := (a[i] > max)
JUMPF R7, endif[R0] % if a[i] <= max then end if
ADD R1, R5, R0 % max := a[i] + 0

endif ADD R2, R2, R4 % i := i + 1
JUMP loop[R0] % go to top of while loop

end CALL exit[R0]  % stop
a DATA $0002  % values in array a

DATA $0005
…
DATA $ffff     % indicates end of array a

max := a[0];
i := 1;
while a[i] <> -1 loop

if a[i] > max
then max := a[i];
end if;
i := i + 1;

end loop;
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Indexed Addressing and Jumps
In general the target address of a jump instruction is calculated from
an index register and a base value:

JUMP x[R]

This allows, in effect, a jump to an address which is found in an array.

We won’t consider this further, but you might like to try to think of
situations in which it can be useful.  

Lecture 4 CS1Q Computer Systems 98

Instruction Formats

• Each assembly language instruction has a 
binary representation: either 1 or 2 16-bit 
words.

• The first word is structured as 4 fields of 4 bits 
each.

• The second word represents the value of a 
label (written #label) or a numerical value, if 
the instruction contains one.
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Instruction Formats
LOAD   Ru, label[Rv] 1 u v 0 #label

LDVAL   Ru, $number 2 u 0 0 number

ADD    Ru, Rv, Rw 3 u v w

SUB     Ru, Rv, Rw 4 u v w

NEG    Ru, Rv 5 u v 0

MUL     Ru, Rv, Rw 6 u v w

STORE  Ru, label[Rv] 7 u v 0 #label

arithmetic
instructions have
similar format

This field identifies the instruction type

These fields identify the registers used

Unused fields are 0

Same format
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Instruction Formats
CMPEQ   Ru, Rv, Rw 8 u v w

CMPGT   Ru, Rv, Rw a u v w

JUMPT    Ru, label[Rv] b u v 0 #label

same format as
arithmetic
instructions

Similar format to LOAD/STORE

CMPLT   Ru, Rv, Rw 9 u v w

JUMPF    Ru, label[Rv] c u v 0 #label

JUMP      label[Ru] d u 0 0 #label

CALL      label[Ru] e u 0 0 #label

RETRN f 0 0 0
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Program Execution
At the heart of the CPUs operation is a loop known as the

fetch-decode-execute cycleor the fetch-execute cycle

FETCH: transfer a word from memory (at the address indicated by
the PC (program counter) into the CPU.

DECODE: work out which instruction it is, and which parts of the
CPU must be used to execute it.

EXECUTE: activate the necessary parts of the CPU. Memory might
be accessed again.

Then the PC must be updated: to point either to the next instruction
in sequence, or to the target address of a jump.
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A Bit of History
The first microprocessor was developed in the early 1970s, by Intel.
Through the 1970s and 1980s, CPUs became more and more complex,
along with developments in IC manufacturing technology. 

By the late 1980s, instruction sets were enormously complex and
therefore difficult to implement. But studies showed that most programs
made little use of the more complex instructions, basically because it’s
hard for compilers to take advantage of special-purpose instructions.

This led to the development of RISC (reduced instruction set computer)
CPUs, aiming to implement a small and simple instruction set very
efficiently. The traditional designs were characterized as CISCs
(complex instruction set computers).
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The IT Machine vs. Real CPUs
The IT machine has many features typical of RISC designs:

- few instructions, following even fewer patterns
- regularity: all registers are interchangeable
- load/store architecture: the only instructions affecting memory

are transfers to/from registers
- only one addressing mode: indexed addressing

In many ways the current Intel CPUs (Pentium x) are the culmination
of the CISC approach, but they are becoming more RISC-like
internally.

The problem of exploiting special-purpose instructions (e.g. MMX)
in compiler-generated code still exists.

CS1Q Computer Systems
Lecture 5
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Where we are

Global computing: the Internet

Networks and distributed computing

Application on a single computer

Operating System

Architecture

Digital Logic

Electronics

Physics

Working upwards within the
digital logic level, in order to
understand architecture in more detail
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Processing Digital Information
We’ll start with some fundamental operations on binary digits and
work up to more complicated operations.

If x and y are binary digits (either 0 or 1) then

x AND y

is a binary digit, defined by

xAND y = 1   if x = 1 and y = 1
= 0   otherwise

AND
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The Truth Table for AND
If we think of the binary values as trueand falseinstead of 1 and 0
then AND has its ordinary meaning:

xAND y is true if x is true and y is true

A truth tablemakes the meaning explicit:

x y x AND y
0 0 0
0 1 0
1 0 0
1 1 1

x y x AND y
f f f
f t f
t f f
t t t

True/false, high/low, 1/0 are all alternatives. We will usually stick
to 1/0 in truth tables.
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Diagrammatic Representation
There is a conventional notation for diagrams in which the AND
operation is represented by:

x
y xAND y

To make it easier to draw diagrams, we might just use a labelled 
box instead:

x
y xAND yand2
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OR
If x and y are binary digits (either 0 or 1) then

x OR y

is a binary digit, defined by x OR y = 1   if x = 1 or y = 1, or both
= 0   otherwise

x y x OR y
0 0 0
0 1 1
1 0 1
1 1 1

Truth table: Diagram:

x
y x OR y

x
y x OR yor2
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Example: Majority Voting
Imagine that three people have to vote either Yes (represented by 1)
or No (represented by 0). The overall result is the majority decision.

If x, y, z stand for the three votes, and r stands for the result, then
we can write

r = (xAND y) OR (y AND z) OR (zAND x)

Diagrammatically:

This can be viewed as a circuit diagramand implemented
electronically. The components are then called logic gates.
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Example: Majority Voting
We can use a truth table to check that the circuit works.

yx z ba c ed r
00 0 00 0 00 0
00 1 00 0 00 0
10 0 00 0 00 0
10 1 10 0 01 1
01 0 00 0 00 0
01 1 00 1 1 1
11 0 01 0 01 1
11 1 11 1 11 1

0

The result r is 1 in the
four cases when two of
x, y, z are 1. 
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What We Have Defined
We have defined a function with three boolean (truth value)
arguments (inputs) and a boolean result (output). Mathematically, we
have 

BBBBmajority →××:

if B is the set {0,1}. The truth table (columns x, y, z, r) shows the
result (an element of B) for each combination of inputs
(each combination of inputs is an element of                   ).      BBB ××

The truth table defines a subset of                          whose elements
correspond to the rows: ((0,0,0),0), ((0,0,1),0), etc. It is a relation
with attributes                  and B.

BBBB ××× )(

BBB ××
For each element (x,y,z)of                  the relation contains exactly one
tuple whose input attributes match (x,y,z). This property is what makes
it into a function. The output attribute of this tuple is the result r.

BBB ××
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Majority Voting
We can make use of the logical operations to express a majority
voting function. 

function Majority(x, y, z : Boolean) return Boolean is
begin

return (x and y) or (y and z) or (z and x);
end Majority;

This gives a flavour of hardware description languages, which are
used in preference to circuit diagrams for complex designs.
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NOT

x NOT x
0 1
1 0

It turns out that AND and OR are not sufficient to define all functions
on binary digits. (Because, any function constructed from AND and
OR must output 1 if all inputs are 1.) The missing ingredient is NOT.

x NOT x

x NOT xnot

Again, if we think in terms of truth values, NOT has its familiar
meaning.

A NOT gate is often called an inverter.
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(AND or OR) and NOT
By using AND, OR and NOT in combination, it is possible to define
any desired function on binary numbers. We will see how to do this
in a few lectures’ time.

Perhaps surprisingly, we only need NOT and just oneof AND and OR.

Exercise:work out the truth table for the following circuit and check
that it is equivalent to the OR function.
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OR from AND and NOT

x y ba c z
0 0
0 1
1 0
1 1
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AND from OR and NOT

x y ba c z
0 0
0 1
1 0
1 1

Exercise:check that this circuit is equivalent to the AND function.
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One Fundamental Operation
Even more remarkably, it is possible to build up all functions from
combinations of just one operation: the NAND operation.

x y x NAND y
0 0 1
0 1 1
1 0 1
1 1 0

x
y x NAND y

x
y x NAND ynand2

NAND is short for NOT AND. We can check that

x NAND y = NOT (x AND y)
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NAND is Universal
Assuming that we have NAND, we can define the other operations:

NOT x = x NAND x
xAND y = NOT (x NAND y) = (x NAND y) NAND (x NAND y)
x OR y = (NOT x) NAND (NOT y) = (x NAND x) NAND (y NAND y)

Exercise:check these equations by constructing truth tables.

x x NAND x
0
1

x y x NAND y
0 0
0 1
1 0
1 1

NOT(x NAND y)
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Another Fundamental Operation
The NOR operation is also sufficient for building all functions.

x y x NOR y
0 0 1
0 1 0
1 0 0
1 1 0

x
y x NOR y

x
y x NOR ynand2

NOR is short for NOT OR. We can check that

x NOR y = NOT (x OR y)
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NOR is Universal
Assuming that we have NOR, we can define the other operations:

NOT x = x NOR x
x OR y = NOT (x NOR y) = (x NOR y) NOR (x NOR y)
xAND y = (NOT x) NOR (NOT y) = (x NOR x) NOR (y NOR y)

Exercise:check these equations by constructing truth tables.

x x NOR x
0
1

x y x NOR y
0 0
0 1
1 0
1 1

NOT(x NOR y)

Exercise:prove that NAND and NOR are the only universal operations.

Lecture 5 CS1Q Computer Systems 122

XOR
If x and y are binary digits then x XOR y

is a binary digit, defined by

x XOR y = 1   if either x = 1 or y = 1, but not both
= 0   otherwise

x y x XOR y
0 0 0
0 1 1
1 0 1
1 1 0

Truth table: Diagram:

x
y x XOR y

x
y x XOR yxor2

XOR is exclusive or. OR is inclusive or.
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Implication
Implication is a logical operation although it is not used in digital
circuits. x => y means “x implies y” or “if x then y” or
“if x is true then y is true”.

x y x => y
false false true
false true true
true false false
true true true

Example
If 2+2=5 then the moon is made of cheese.

If 2+2=5 then Glasgow is in Scotland.

If Glasgow is in Scotland then 2+2=5.

If Glasgow is in Scotland then 2+2=4.

x => y is true if it is logically valid to deduce y from x. It is true in all
cases exceptwhen x is true and y is false.

Note:  x => y does not mean that x causes y.

CS1Q Computer Systems
Lecture 6
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Algebraic Notation
Writing AND, OR, NOT etc. is long-winded and tedious. We 
generally use a more compact notation:

xy means  x AND y

yx+ means  x OR y

x means  NOT x

yx⊕ means  x XOR y

The operations can be combined to form algebraic expressions
representing logic functions.
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Examples of Algebraic Notation
The majority voting function from the last lecture can be written

zxyzxy ++

The expression
)( zyx +

means xAND (y OR z)

The expression )( zyx +

means xAND NOT (y OR z)

and also xAND (y NOR z)

Lecture 6 CS1Q Computer Systems 127

Exercise
What is the meaning of this expression? Draw a circuit for this
function, and calculate the truth table. Which logical operation is it?

yxyx +
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Multi-Input Gates
The AND and OR operations can be generalized to take any number
of inputs. Algebraically, we simply write xyzfor the three-input AND
of x, y and z. Similarly we write x+y+z for the three-input OR.

In circuit diagrams we use the same symbols as before, but with
additional input wires:

Definitions: AND is true if all the inputs are true; OR is true if
at least oneof the inputs is true.

NAND and NOR can also be defined for any number of inputs, in
the obvious way.

and3 or3
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Synthesis of Multi-Input Gates
An n-input AND or OR gate can be synthesized from 2-input gates of
the same type.

Exercise: check this by using truth tables.

Exercise: how many 2-input AND gates are needed to synthesize an
n-input AND gate?

Exercise: what happens if NAND or NOR gates are joined up like this?

Lecture 6 CS1Q Computer Systems 130

Boolean Algebra
The algebraic properties of the logical operations were studied by
George Boole (1815-1864). As a result we have boolean algebra
and the datatype Boolean.

The laws of boolean algebra can be used to rewrite expressions
involving the logical operations.

Negation is an involution xx = (1)

No contradictions 0=xx (2)

AND is idempotent xxx= (3)
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Laws of Boolean Algebra
Excluded middle 1=+ xx (4)

OR is idempotent xxx =+ (5)

Zero law for AND 00 =x (6)

AND is commutative yxxy = (7)

Unit law for AND xx =1 (8)

OR is commutative xyyx +=+ (9)

Unit law for OR xx =+ 0 (10)

Distributive law xzxyzyx +=+ )( (11)
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Laws of Boolean Algebra
One law for OR 11=+x (12)

OR is associative zyxzyx ++=++ )()( (13)

AND is associative zxyyzx )()( = (14)

The associativity laws (13) and (14) justify writing xyzand x+y+z
for the 3-input versions of AND and OR: it doesn’t matter whether
we interpret xyzas x(yz)or as (xy)z.

The laws can be verified by thinking about the ordinary meanings of
AND, OR and NOT, or by truth tables.

Distributive law ))(( zxyxyzx ++=+ (15)
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Example
To verify that x(y+z) = xy + xzwe construct the truth tables for the
left and right hand sides of the equation, considering them both as
functions of x, y and z.

yx z y+z x(y + z) xy xz xy + xz
00 0
00 1
10 0
10 1
01 0
01 1
11 0
11 1
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Exercise
Using the laws of boolean algebra, show that xy + x = x.

Working out which law to use next requires some creativity.
Truth tables provide a straightforward, systematic way to check
equivalences.

Notice the similarity with the set membership tables used in the 
Information Management section to verify set identities.
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De Morgan’s Laws
Two important laws relate AND, OR and NOT. They are named after
Augustus De Morgan (1806-1871).

NOT(xAND y) = (NOT x) OR (NOT y)
NOT(x OR y) = (NOT x) AND (NOT y)

In algebraic notation:

yxyx

yxxy

=+

+=
“Break the line and change the sign.”
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Boolean Algebra in Programming
The laws of boolean algebra apply anywherethat logical operations
are used. For example, the code

if ((x=1) and (y=1)) or ((x=1) and (z=2)) then
whatever

end if; 

is equivalent to

if (x=1) and ((y=1)) or (z=2)) then
whatever

end if; 
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Circuits from Truth Tables
• In Lecture 5 we constructed a logic circuit which 

computes the majority voting function.

• The function was defined by an English 
sentence, and I wrote down a logical expression 
and then a circuit by thinking about the ordinary 
meaning of the sentence.

• In general we need a more systematic approach.

• We’ll use majority voting as an example, then 
progress to functions such as addition.

• Start with the truth table as the definition of the 
function to be implemented.
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Majority Voting Systematically
y zx r
0 00 0
0 10 0
1 00 0
1 10 1
0 01 0
0 11 1
1 01 1
1 11 1

For r to be 1, it must be the case that:

x=0 and y=1 and z=1
or

x=1 and y=0 and z=1

or

x=1 and y=1 and z=0

or

x=1 and y=1 and z=1
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Majority Voting Systematically
y zx r
0 00 0
0 10 0
1 00 0
1 10 1
0 01 0
0 11 1
1 01 1
1 11 1

Alternatively, for r to be 1, it must be the case that:

x=1 and y=1 and z=1
or

x=1 and y=1 and z=1

or

x=1 and y=1 and z=1

or

x=1 and y=1 and z=1
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Majority Voting Systematically
y zx r
0 00 0
0 10 0
1 00 0
1 10 1
0 01 0
0 11 1
1 01 1
1 11 1

Alternatively, for r to be 1, it must be the case that:

xyz=1
or

xyz=1

or
xyz=1

or
xyz=1
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Majority Voting Systematically
y zx r
0 00 0
0 10 0
1 00 0
1 10 1
0 01 0
0 11 1
1 01 1
1 11 1

Rewriting one more time, we have discovered that:

xyzzxyzyxyzxr +++=

which gives the following circuit.
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Majority Voting Systematically
xyzzxyzyxyzxr +++=

The expressions xyz etc. are called minterms.

The formula for r is said to be in sum of productsform,
for obvious reasons.

With n variables there are         possible minterms. Each minterm
involves all n variables, and each variable is either negated (x ) or
not negated (just x).

n2
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Minterms and the Truth Table

y zx r
0 00 0
0 10 0
1 00 0
1 10 1
0 01 0
0 11 1
1 01 1
1 11 1

Each minterm corresponds to one row
of the truth table, i.e. to one combination
of values (0 or 1) of the variables.

The minterm corresponds to the row in
which the negated variables have value 0
and the non-negated variables have value 1.

The formula for r consists of the minterms
corresponding to the truth table rows in
which r = 1, ORed together.

xyzzxyzyxyzxr +++=

zyx
zyx
zyx
zyx
zyx
zyx
zyx
zyx
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Structure of the Circuit
• Notice the structure of the circuit: NOT gates 

to make negated inputs available, AND gates 
to produce the required minterms, an OR 
gate to produce the final output.

• In the same way we can construct a circuit for 
any function.

• With m inputs, and n rows with output value 
1:    m NOT, n m-input AND, 1 n-input OR.

• This circuit is more complex than the original 
majority voting circuit. We will have more to 
say about this later.
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Equality Test
Suppose we want to design a circuit which implements the equality
test function on two inputs. That is, we want to compute r as a function
of x and y, where r will be 1 if x and y have the same value, and 0 if
x andy have different values.

For two variables there are 4 possible minterms, which correspond to
the rows of the truth table as follows.

y rx
0 10
1 00
0 01
1 11

yx
yx
yx
yx
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Equality Test

y rx
0 10
1 00
0 01
1 11

yx
yx
yx
yx

The formula for r is the OR of the two minterms
corresponding to the rows in which r = 1.

xyyxr +=

The circuit:
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Parity
The parity of a binary word is determined by the number of 1s in it:
if it contains an odd number of 1s then the parity is 1 (or odd);
if it contains an even number of 1s then the parity is 0 (or even).

(Mathematically the parity of a number is sometimes said to be odd
for odd numbers and evenfor even numbers. But for binary words,
parity is based on the number of 1s.)

Example: 1010 has even parity. 1101 has odd parity.
11111111 has even parity. 00101010 has odd parity. 
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Parity
The parity function for a 3 bit word xyzis defined by the following
truth table, which also shows the minterm for each row.

y zx p
0 00 0
0 10 1
1 00 1
1 10 0
0 01 1
0 11 0
1 01 0
1 11 1

zyx
zyx
zyx
zyx
zyx
zyx
zyx
zyx

The formula for p is the OR of the
four minterms corresponding to the
rows in which p = 1.

xyzzyxzyxzyxp +++=
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Exercises
1. Draw a circuit for the parity function, in the same way that we did
for majority voting.

2. Find an equivalent circuit, which uses just two XOR gates. Prove
that it is equivalent, both by truth tables and by using the laws of
boolean algebra.
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Applications of Parity
Parity checking can be used for error detection, for example in
computer memory.

Suppose that each memory location stores an 8 bit word. A memory
device with parity checking would actually store 9 bits per word,
where the 9th bit is the parity of the original 8 bit word. The parity
bit is calculated when a word is stored in memory.

0 1 1 0 1 1 1 0 1
in both cases, the 9 bit
word has even parity

1 0 1 0 0 1 1 0 0
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Applications of Parity
When a 9 bit word is read from memory, its parity is calculated.
If a single bit within the word has been corrupted (changed from
0 to 1 or from 1 to 0) then the parity of the word will be odd.

0 1 1 0 1 1 1 0 1

0 1 1 0 1 0 1 0 1

corruption

parity is now odd

0 1 1 0 1 1 1 0 1

0 1 1 0 1 1 1 0 0

corruption

parity is now odd

The computer can tell that a memory error has occurred (it could be
because of a power fluctuation, for example) and do something
(but what?)
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Applications of Parity
The same idea can be used when transmitting data over a network.
Instead of sending an 8 bit word, send a 9 bit word which includes
a parity bit. The receiver can check the parity.

Parity checking cannot correct errors, because it is not possible to
work out which bit was corrupted. In a networking application, the
corrupted word would be retransmitted.

Parity checking can only detect single bit errors, because if two bits
are changed then the parity remains the same. It might be acceptable
to assume that the probability of two errors in the same word is very
small.
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Error Detection and Error Correction
In some applications, errors are inevitable and therefore it is essential
to be able to correct(not just detect) errors. For example, radio
transmissions from spacecraft.

Simple code: send each bit three times. When receiving, calculate
a majority decision for each group of three bits. 

0 send 000

1 send 111

receive 001means 0

receive 101means 1

and so on

This code can correct any single-bit error in each group of three.
More sophisticated error correcting codesexist. The data transfer
rate is always reduced, but by how much?

CS1Q Computer Systems
Lecture 7
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Simplifying Circuits
We have two different logical expressions for the majority voting
function:

xyzzxyzyxyzxr +++=

zxyzxyr ++=

They are equivalent, but the first is simpler: easier to understand, 
perhaps more efficient to implement.

The more complex expression came from our systematic design
technique. So we need a systematic simplification technique as well.

We’ll look at systematic simplification in a moment. But first,
here’s a non-systematic approach.
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Simplifying with Boolean Algebra

xyzzxyzyxyzxr +++=
xyzxyzxyzzxyzyxyzx +++++=
xyzzxyxyzzyxxyzyzx +++++=
xyzzxyxzyyxzyzxxyz +++++=

)()()( zzxyyyxzxxyz +++++=
111 xyxzyz ++=

zxyzxy ++=

. osimplify t ),( as factorize ,spot  :Method xyzzxyxyzzxy ++
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Karnaugh Maps
A Karnaugh map, or K-map, is an alternative representation of a
truth table, which makes it easy to spot when expressions of the
form            can be eliminated.xx+

Example: consider the function yxyr +=
and lay out its truth table as a 2 by 2 grid.

x y r
0 0 0
0 1 1
1 0 0
1 1 1

0 1
0 1

1

1
0

0

x
x

y y

This grid is the Karnaugh map forr.
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Karnaugh Maps
In the Karnaugh map, each square corresponds to one of the four
combinations of values of x and y. The values of x and y are shown
at the left hand side and along the top.

0 1
0 1

1

1
0

0

x
x

y yx y r
0 0 0
0 1 1
1 0 0
1 1 1

The rows are labelled with      and      , and the columns with      and     ,
to show which axis corresponds to which variable and also to indicate
which minterm corresponds to which square in the grid. 

x x y y

minterm

yx
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Karnaugh Maps

0 1
0 1

1

1
0

0

x
x

y y

From the Karnaugh map, we can write down a formula for r by
OR-ing together the minterms corresponding to the squares
which contain 1. xyyxr +=
This can be factorised as

yxxr )( +=
and therefore simplifies to

yr =

This is just what we did for the majority voting function, but now
notice that the presence of                  in the formula has a visual
interpretation: there are two adjacent 1s in the y column, covering
both the         and          squares.x x

xx +
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Exercise
Draw a Karnaugh map for the function

yxxr +=
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Simplification with K-Maps
Each square in the K-map corresponds to a minterm. Each 1 by 2
rectangle (either horizontal or vertical) corresponds to one of the
variables, either negated or non-negated.

Any collection of squares and rectangles which cover all the 1s,
corresponds to a logical formula for the function defined by the K-map.

By choosing a covering in which the rectangles are as large as
possible (maybe overlapping), we obtain the simplest formula.

(What do we mean by “simplest”? We are trying to minimise the
number of terms OR-ed together, and minimise the complexity of
each term. This simplification process is often called minimisation.)
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Simplification with K-Maps
Example: the function yxxr +=
has this K-map:

0 1
1 1

1

1
0

0

x
x

y y

Different coverings of the 1s give different formulae.

Three squares: yxxyyxr ++=
Square and horizontal rectangle: yxxr +=
Square and vertical rectangle: yxyr +=
Horizontal and vertical rectangles (shown): yxr +=
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K-Maps for 3 Variables
The Karnaugh map for a function of 3 variables consists of a grid of
8 squares. Here is the K-map for the majority voting function.

0 0
0 1x

x
y y

1 0
1 1

y y

z z z z

The 0s and 1s around the edges have
been omitted. Remember that a
negated label corresponds to 0 and a
non-negated label to 1.

Notice that the negated ys appear in a different pattern from the
negated zs. This means that again each square corresponds to one
of the 8 minterms.

The three rectangles of 1s correspond to xy, yzand xz. OR-ing them
together gives the simplified formula for majority voting:

zxyzxy ++
Lecture 7 CS1Q Computer Systems 164

Labelling 3 Variable K Maps
It is essential to label the rows and columns correctly, otherwise the
technique of finding overlapping rectangles does not work.

x
x

y y y y

z z z z

It must be the case that any two adjacent squares (including “wrapping
round” from top to bottom) have labels which differ by negation of
exactly one variable. There are several labelling schemes which have
this property, but for safety you should memorise the labelling which
is used in the lecture notes.
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Another Example
We will use a Karnaugh map to minimise the formula

zyxyzzyxzx +++
First we fill in the K-map. The terms with two variables correspond to
2 by 1 rectangles, and the other terms are just squares.

0 1
1 1x

x
y y

1 0
1 1

y y

z z z z

The remaining squares are 0.
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Another Example

0 1
1 1x

x
y y

1 0
1 1

y y

z z z z
Now we can find collections of rectangles which cover the 1s.
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Another Example

0 1
1 1x

x
y y

1 0
1 1

y y

z z z z
Now we can find collections of rectangles which cover the 1s.

Three horizontal 2 by 1 rectangles: xzyxzx ++
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Another Example

0 1
1 1x

x
y y

1 0
1 1

y y

z z z z
Now we can find collections of rectangles which cover the 1s.

Three horizontal 2 by 1 rectangles: xzyxzx ++
2 by 2 square and two 1 by 1 squares: zyxzyxy ++
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Another Example

0 1
1 1

x
y y

1 0
1

y

1

y

z z z z
Now we can find collections of rectangles which cover the 1s.

Three horizontal 2 by 1 rectangles: xzyxzx ++
2 by 2 square and two 1 by 1 squares: zyxzyxy ++
Combining the two 1 by 1 squares:

x

yxy +
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Another Example

0 1
1 1

x
y y

1 0
1

y

1

y

z z z z
Now we can find collections of rectangles which cover the 1s.

Three horizontal 2 by 1 rectangles: xzyxzx ++
2 by 2 square and two 1 by 1 squares: zyxzyxy ++
Combining the two 1 by 1 squares:

x

yxy +
4 by 1 and 2 by 1 rectangles: yxx +
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Another Example

0 1
1 1

x
y y

1 0
1

y

1

y

z z z z
Now we can find collections of rectangles which cover the 1s.

Three horizontal 2 by 1 rectangles: xzyxzx ++
2 by 2 square and two 1 by 1 squares: zyxzyxy ++
Combining the two 1 by 1 squares:

x

yxy +
4 by 1 and 2 by 1 rectangles: yxx +
4 by 1 rectangle and 2 by 2 square: yx+ (the simplest formula)
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Exercise
In the same way, minimise the expression

zyxzyxy ++
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K-Maps for 4 Variables
A Karnaugh map for a function of 4 variables x, y, z, w uses the
following grid.

x
y y y y

z z z z
x
x
x

w
w

w

w

The left and right columns are adjacent. The top and bottom rows
are adjacent. Larger K-maps can be constructed (e.g. for 5 variables,
take 2 copies of this K-map, one labelled v and the other labelled v )
but are less useful because it is more difficult to spot rectangles.
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Example: Gray Code
Gray code is an alternative binary counting sequence. The Gray code
sequence for 3 bits is as follows:

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

At each step, exactly one bit is changed, and
it is the rightmost bit such that a change produces
a word which has not already occurred.

Exercise: use this rule to work out the Gray code
sequence for other numbers of bits.

We will design a circuit to calculate the next 3 bit
Gray code. Given a 3 bit input xyz, the 3 bit output
x’ y’ z’ is the word which follows xyzin the Gray
code sequence. For input 100 the output is 000.
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Gray Code Truth Tables
By combining three truth tables we can show x’, y’ and z’ as functions
of x, y and z.

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x y z
0 0 1
0 1 1
1 1 0
0 1 0
0 0 0
1 0 0
1 1 1
1 0 1

x’ y’ z’
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1

Gray Code Karnaugh Maps
For each of x’, y’, z’ we can draw a Karnaugh map and find a
minimised formula.

For x’:

0 1
0 1

x
y y

0 0
1

y

1

y

z z z z
x

For y’:

0 1
0 1

x
y y

1 1
0

y

0

y

z z z z
x

For z’:

0
0 1

y y
0 1
1

y

0

y

z z z z
x

xzzyx +=′
zxzyy +=′
yxxyz +=′

x
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Gray Code Circuit
Notice that the expression          occurs twice, so we can reduce the
size of the circuit by only calculating it once. Also notice that

, which means that if XOR gates are available then the
circuit can be simplified further.

zy

yxz ⊕=′
CS1Q Computer Systems

Lecture 8
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Traffic Lights
Suppose we want to design a controller for a set of traffic lights.
British traffic lights have three lights, coloured red, amber and green.

R

A

G

There are four possible combinations of the lights:

Red

Red and Amber

Green

Amber

The first step is to design a circuit which has an input representing
which of the four combinations is required, and generates an output
(1 or 0, representing on or off) for each of the three lights.
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Traffic Lights
If we number the combinations 0 to 3, we can construct a truth table.

Number Red Amber Green
0
1
2
3

1
1
0
0

0
1
0
1

0
0
1
0

How should the input be fed into the circuit? One way is to use four
input wires, labelled      ,       ,       ,      . To select combination n, we
will input 1 on       and 0 on the other inputs.

0d 1d 2d 3d
nd
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Traffic Lights
Here is the truth table with the d inputs. (It is not a complete truth
table because not all combinations of the inputs are listed.)

0001
Red Amber Green

1
1
0
0

0
1
0
1

0
0
1
0

3d2d1d0d

0
0
1

0
1
0

1
0
0

0
0
0

Exercise: try to spot simple definitions for Red, Amber and Green.

Lecture 8 CS1Q Computer Systems 182

Reducing the Number of Inputs
Using 4 inputs to represent a choice of 4 combinations is inefficient.
If we write the combination number in binary then only 2 bits are
needed, and a 2 bit binary number corresponds to 2 input wires.

In general the difference is between        inputs and       inputs
for representing a choice between       possibilities. As n becomes
larger, this difference becomes more significant.

n n2
n2

If the 2 bit binary input is           then the truth table becomes:01 ii

00
Red Amber Green

1
1
0
0

0
1
0
1

0
0
1
0

0i1i

1
0
1

0
1
1
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Exercise
Work out formulae for Red, Amber and Green.

00
Red Amber Green

1
1
0
0

0
1
0
1

0
0
1
0

0i1i

1
0
1

0
1
1

This can be done by using Karnaugh maps, but we can spot some 
shortcuts.
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Decoders
A decoder is a circuit which has     inputs and     outputs, and converts
a binary number on the inputs into a 1 on just one of the outputs. 

n n2

A 2-4 decoder: and its truth table:

00
0i1i

1
0
1

0
1
1

0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0

3d 2d 1d 0d

We can immediately see that each output corresponds to one of the
four minterms:

013 iid =

012 iid =
011 iid =

010 iid =
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2-4 Decoder Circuit
The following circuit generates all four minterms from two inputs,
and implements the 2-4 decoder.
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3-8 Decoder Circuit
Larger decoders can be implemented in the same way. Here is a 3-8
decoder.
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Traffic Lights with a Decoder
Using a 2-4 decoder, the circuit which generates traffic light
combinations is as follows.

We no longer have to think about the problem of invalid inputs. 

To complete the traffic light controller, we just need to make the inputs
cycle through the binary representations of the numbers 0,1,2,3. We
will see how to do this later in the course.
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Exercises
The smallest possible decoder is a 1-2 (1 input, 2 outputs). How is this
implemented?

How many components (inverters and AND gates) are needed to build
an               decoder? What if only 2-input (not larger) AND gates are
used?

nn 2−
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Decoders with Enable
A standard decoder typically has an additional input called Enable.

If the Enableinput is 1 then the component works as a decoder.
If the Enableinput is 0 then the component is inactive. Exactly what
this means depends on the details of the implementation, but for now
we can interpret it as meaning that all the outputs are 0.
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2-4 Decoder with Enable
The Enableinput is fed into the AND gates which produce the outputs.

Many components have an Enableinput which works in this way.
Sometimes the Enable input is active high(as in this case); sometimes
it is active low.
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2-4 Decoder with Active Low Enable
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Selecting Between Two Functions
Suppose we want a circuit which can do one of two things, depending
on the value of a control input.

Example: x
y

r

c

r = x OR y      if c=0
= x XOR y   if c=1

function r(c, x, y : Boolean) return Boolean is
begin

if c then return x XOR y
else return x OR y

end if;
end r;
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Our Standard Design Technique
We can design a circuit for r in the usual way:

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

c x y
0
1
1
1
0
1
1
0

r

0 1
0 1

c
x x

1 1
0

x

1

x

y y y y
c

xcyxyxr ++=

but there are several problems with this approach.
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Problems
The final formula for r doesn’t have the same structure as the original
specification of the function. Where has the x OR y gone? If we
wanted to change OR to AND in the specification of r, we would have
to repeat the whole design process.

In a large system we might have complex circuits, computing functions
f and g, say, instead of OR and XOR. We don’t want to redesign
f and g into a new circuit which includes the functionality of both.

In order to work with large and complex designs, it is essential to be
able to treat parts of the design as black boxeswhich are combined
in standard ways.
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What We Really Want
We want to end up with a circuit which looks like this:

This is called
a multiplexer.

or2

xor2

x
y r

c

or more generally like this:

f

g
r

so
m

e 
in

pu
ts

c
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The 2-1 Multiplexer
The 2-1 multiplexer has 2 data inputs, 1 output, and a control input.

MUX
i1

i0
d

c

data inputs output

control input

Specification:
if c = 0
then d = i0
else d = i1
endif
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The 2-1 Multiplexer
Using the usual technique:

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

c i1 i0
0
1
0
1
0
0
1
1

d

10 ciicd +=

0i

0 0
0 1

c
1i 1i

1 1
1 0

0i
c

1i 1i

0i 0i
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The 2-1 Multiplexer

not

and2

and2
or2

c

i1

i0

d

this is a 1-2 decoder
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A 4-1 Multiplexer
The 2-1 multiplexer is constructed from a 1-2 decoder, 2 AND gates
and an OR gate. Using the same structure we can make a 4-1
multiplexer.

Larger multiplexers (in general,              ) are constructed similarly.12 −n

Lecture 8 CS1Q Computer Systems 200

Multibit Multiplexers
The basic             multiplexer is a switch, allowing one of       inputs
to be connected to the output. Each input consists of a single bit.

12 −n n2

It is often necessary to consider a group of wires as a single signal.
For example, in a 32-bit microprocessor, all data is handled in blocks
of 32 bits, which means that 32 wires are needed to carry a value from
one part of the circuit to another.

A collection of wires which form a single signal is called a bus. In
circuit diagrams, a bus is represented by a single line with a short
diagonal line across it, labelled to indicate the widthof the bus.
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Multibit Multiplexers
It is often necessary to use multiplexers to switch whole buses. In
diagrams, we simply draw a multiplexer as usual, with buses of
width as inputs and output. Bus notation may also be used to indicate
the width of the control input signal.

This example shows a 4-1 multiplexer on a 32 bit bus. A 32 bit
multiplexer can be implemented with 32 basic multiplexers, all
sharing the same control inputs.
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Multiplexers and Logic Functions

Any logic function of n inputs can be implemented with a             
multiplexer. For example, for a 2 input logic function, call the inputs
x and y and the result r, and let the truth table be: (a, b, c, dare each
either 0 or 1)

12 −n

0 0
0 1
1 0
1 1

x y
a
b
c
d

r
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Multiplexers and Logic Functions

0 0
0 1
1 0
1 1

x y
a
b
c
d

r

The following circuit implements this function,
because x and y, when connected to the control
inputs, select the correct row of the truth table.

d 3

c 2

b 1

a 0

rMUX

OR
0
1
1
1

1
1
1
0

c
2
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Exercise
The previous slide shows how to implement any logic function of 2
inputs, by using a 4-1 multiplexer. It is actually possible to implement
the AND and OR functions with a 2-1 multiplexer. Work out how to
do this. Also work out how to use a 2-1 multiplexer to implement the
NOT function.
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Multiplexers and Logic Functions
Any logic function of 3 inputs can be implemented with a 4-1
multiplexer and an inverter, as follows.

Let the inputs be x, y, z. Connect x and y to the control inputs of the
multiplexer. For each combination of values of x and y, one of the
following cases must apply.

• The output is 0, regardless of the value of z.
• The output is 1, regardless of the value of z.
• The output is equal to z.
• The output is equal to    . z
For each combination of values of x and y, the multiplexer input which
is selected by that combination is connected to either 0, 1, z or     ,
depending on which of the above cases applies. 

z
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Example: Majority Voting
y zx r
0 00 0
0 10 0
1 00 0
1 10 1
0 01 0
0 11 1
1 01 1
1 11 1

0
0
z
z
z
z
1
1
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Example: Parity
y zx r
0 00 0
0 10 1
1 00 1
1 10 0
0 01 1
0 11 0
1 01 0
1 11 1

z
z
z
z
z
z
z
z
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Multiplexer Applications
Using a multiplexer we can build a circuit which allows one of a
number of operations to be chosen, and applied to the inputs (this is
where we started). For example, here is a circuit which gives a choice
between AND and OR.

For a choice between more operations, a larger multiplexer can be
used. More generally, multiplexers are used to give a choice between
a number of different sources of data, not necessarily a number of
different operations on the same data.
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Multiplexer Applications
The same idea can be used for operations on multibit words. For
example, using 8 bit words, we just replace every wire (except the
control wire) by an 8 bit bus.

In this circuit, the AND operation is extended to 8 bit words by
operating on each bit position independently (and similarly OR):
e.g. 11010010 AND 01110110 = 01010010.
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Multiplexer Applications
A similar example, which is relevant to the exercises in Lab 3, is
calculating either x AND y or  xAND (NOT y), where again x and y
are multibit values.

These examples begin to show how the ALU of a microprocessor can
be implemented. We’ll see more details later.
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Demultiplexers
A demultiplexer is the opposite of a multiplexer. There is one data
input, whose value appears on one of the data outputs, depending on
the value of the control inputs. Here is a 1-4 demultiplexer.

If the control inputs c1 c0represent the number n in binary, then the
value of i is copied to output dn. Depending on the details of the
electronic implementation, the other outputs might be 0, or might be
in a disconnected state.
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Demultiplexers
It is straightforward to implement a demultiplexer. The circuit uses a
decoder in a similar way to the implementation of a muliplexer.
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Addition
We want to be able to do arithmetic on computers and therefore we
need circuits for arithmetic operations. Naturally, numbers will be 
represented in binary. We’ll start with addition.

Recall that addition in binary is just like addition in decimal:

0 1101
1

1 101 13

0 011 + 6

19

carry in
1

carry out

typical column

Each column: add three bits (two from the original numbers,
one carry input) and produce two bits (sum and carry output).
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Designing an Adder
Here is the truth table for the single bit addition function. The bits
being added are x and y. The carry input is Cin.The sum is s and the
carry output is Cout.

yx CinCout s
00 0 0 0
00 1 0 1
10 0 0 1
10 1 1 0
01 0 0 1
01 1 1 0
11 0 1 0
11 1 1 1

Notice that the Coutand s columns,
interpreted as a 2 bit binary number,
are simply the sum of the x, y and Cin
columns.

It turns out that Cout is the majority
voting function from Lecture 5, and
s is the parity function from Lecture 6.
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Implementing the Adder
We now know that

incyxs ⊕⊕=
xcycxyc ininout ++=

so we can construct a circuit:

A single bit adder is usually
represented like this:
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Multi-Bit Addition
Addition of multi-bit numbers is achieved
by chaining single bit adders together. Here
is a 4 bit adder. The inputs are x3 x2 x1 x0
and y3 y2 y1 y0. The output is s4 s3 s2 s1 s0
(a 5 bit number).

The carry out from each adder is fed into the
carry in of the next adder. The carry in of the
adder for the least significant bit is set to 0.

Note that the sum of two n bit numbers can
always be expressed in n+1 bits:
if              and                thennx 2< ny 2<

)1(222 +=+<+ nnnyx
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Half Adders
In effect we have directly implemented addition of threebinary digits.
Let’s consider addition of just two digits, which is obviously more
fundamental, even though it does not directly correspond to the
original calculation.

Adding two bits x and y produces a sum s and a carry c:

x y sc
0 0 00
0 1 10
1 0 10
1 1 01

We can immediately see that

xyc =
yxs ⊕=
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Half Adders
x y sc
0 0 00
0 1 10
1 0 10
1 1 01

xyc =
yxs ⊕=

The half adder consists of an AND gate and an XOR gate:
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Two Halves Make a Whole
The following circuit uses two half adders to implement a full adder.

Exercise: use a truth table to check that this circuit is correct.
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Ripple Carry
The electronic implementations of logic gates do not work
instantaneously: when the inputs change there is a short delay, perhaps
a few picoseconds, before the outputs change. In our multi-bit adder,
these delays accumulate because the carry bits have to propagate all
the way along the circuit. This adder design is called ripple carry.
The more bits, the longer the delay.

Ripple carry delays would be very significant in a fast CPU. More
sophisticated adder designs exist, which use various shortcuts to
calculate carry bits without propagating them along the whole word.
For more details, consult the books.
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Subtraction
To calculate x - ywe calculate x + (-y) where -y is calculated in the
2s complement representation by inverting all the bits of y and then
adding 1. A modification of the addition circuit does the trick: NOT
gates do the inversion, and the 1 can easily be added by connecting
the rightmost carry input to 1 instead of 0.

The final carry output is ignored so that
we get a 4 bit result. When working with
2s complement numbers, the final carry
does not allow a 5 bit result to be produced.
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An Add/Subtract Unit
We can construct a circuit which either adds or subtracts, under the
control of an input signal. A 2-1 multiplexer is used to select either
plain or inverted values of the second input.

ADD

not

x

y

control

output

MUX
1

0

Cin

32

32

32

1 for subtract, 0 for add

control signal also
gives correct Cin

data of any width
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A Simple ALU
Using similar ideas, here is an ALU with 4 functions: add, subtract,
AND, OR.

ADD/SUB

AND

OR
MUX
1

0

MUX
1

0

x y

output

c1 c0

c1 c0
0   0    add
0   1    sub
1   0    AND
1   1    OR
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Other Mathematical Operations
There is a sequence of mathematical operations of increasing
complexity:

addition/subtraction
multiplication
division
square root
transcendental functions (log, sin, cos, …)
…

Where is the hardware/software boundary?
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Other Mathematical Operations
We have seen that integer addition and subtraction are easy to
implement in hardware.

We have also seen that integer multiplication is easy to implement
in software (e.g. in assembly language for the IT Machine). More
complex mathematical operations can be implemented by more
complex software.

For simple CPUs (e.g. microprocessors of the late 1970s/early 1980s,
such as the 6502 or Z80) this is a natural place for the
hardware/software boundary.

Modern microprocessors are more complex (e.g. Pentium 4 computes
transcendental functions for 128 bit floating point in hardware).

Lecture 9 CS1Q Computer Systems 227

Multiplication
We can design a circuit for integer multiplication. If we multiply two
4 bit numbers  x = x x  x  x   and  y y  y  y   then the result is an 8 bit
number  z  z  z  z  z  z  z  z  .

x × y y  y  y  = x × (y × 8 + y  × 4 + y  × 2  + y )
= x × y × 8 + x × y  × 4 + x × y  × 2 + x × y 
= (x ∧ y ) × 8 + (x ∧ y ) × 4 + (x ∧ y ) × 2 + x ∧ y 

x ∧y x  ∧y x  ∧y x  ∧y 0 0 0

x ∧y x  ∧y x  ∧y x  ∧y 0 0

x ∧y x  ∧y x  ∧y x  ∧y 0

x ∧y x  ∧y x  ∧y x  ∧y

zzzzzzzz

+

3 2 1 0 3 2 1 0

3 2 1 07 6 5 4

3 2 1 0 3 2 1 0

3 2 1 0

3 2 1 0

00010203

1111 0123

2222 0123

3333 0123

01234567
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Multiplication

AND

x x   x   x

y

+

AND y 0

+

AND y

+

AND y

carry in = 0

carry in = 0

carry in = 0

carry out

carry out

carry out

z z   z    z   z z z z

3 2 1 0x x   x   x3 2 1 0

x x   x   x3 2 1 0

x x   x   x3 2 1 0

01

2

3

01234567
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Multiplication
Any calculation which can be done in a fixed number of steps can be
converted into a circuit in a similar way. Such a circuit is faster than a
software solution (but not instant). But the circuit may be large: for
multiplication, the size of the circuit is proportional to the squareof
the word length.

Key point: there’s a trade-off between execution time, and space
(area on the CPU chip). With older manufacturing technologies,
space was at a premium, therefore hardware operations stopped at
addition. Nowadays, time is more significant. 

In practice, a circuit for a complex operation such as division is more
likely to be designed as a state machine- more details later.

CS1Q Computer Systems
Lecture 10
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Combinational Circuits

All the circuits we have seen so far are combinational, meaning that
the output depends only on the present inputs, not on any previous
inputs. Combinational circuits have no memory, no state information.

Some circuits which we might want to build are obviously not
combinational.

• A traffic light controller must remember which point in the sequence 
has been reached.

• A CPU must remember which instruction it has to execute next. 
(Also the contents of all the registers. The RAM is further state
information if we consider the computer as a whole.)

Lecture 10 CS1Q Computer Systems 232

Sequential Circuits
Circuits with memory are called sequential. Their general structure is
shown by the following diagram.

To predict the behaviour of a sequential circuit, we need to know
which state it is in, and how the next state and the outputs depend
on the current state and the inputs.

Abstract view: the finite state machine, a very important concept in CS.
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Finite State Machines
A finite state machine is a system which can be in one of a finite
number of states, and can change state. A change of state is called a
transition.

Example: traffic lights.
red

red & amber

green

amber
Here there are four states,
labelled with the lighting
combinations. We think of the
transitions as being caused by
an external timer or clock.

This is a transition diagram.
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Finite State Machines
Example: 3 bit binary counter.

000 001

010

011

100101

110

111

Usually the initial stateis specified: in this case, probably 000.
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Finite State Machines
A finite state machine is sometimes called a finite state automaton
(plural: automata), and often abbreviated to FSM or FSA.

An FSM is an abstract description or specification of a system with
several possible states: for example, a sequential circuit.

There are many variations of the basic idea. We can consider
unlabelled transitions (as in the previous examples); labelled
transitions in which the labels are viewed as inputs; outputs, which
can be associated with either states or transitions; distinguished states
with particular meanings. 

FSMs pop up all over Computing Science. In fact, every computer
is a FSM, although it is often convenient to pretend that computers
have unlimited memory and an infinite number of possible states.
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Finite State Machines
Example: telephone.

on hook off hook

ringing
conversationringing

conversation pick up

dial

answer

put downincomingpick up

put down

Transitions are labelled but we’re not describing howeach transition
is activated.

Of course this example leaves out many details of the real telephone
system!
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Finite State Machines
Example: web site.

Any web site can be viewed as a finite state machine. Each state is a
page, and each link is a transition to another state (page).

Exercise: pick a web site and start to draw the transition diagram for
the FSM which describes its structure.

(Actually, many web sites contain dynamically generated pages which make it
difficult to describe them as FSMs, but there is often an overall structure which
can be thought of as an FSM.)

This idea could help to answer questions like: Are all pages reachable?
Is it easy to return to the home page?
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Finite State Machines as Accepters
A particular kind of FSM acceptsor recognisescertain input sequences.

Transitions are labelled with symbols from an input alphabet.
One state is the initial state and some states are final or acceptingstates.

If a sequence of input symbols is fed into the FSM, causing transitions,
then the sequence is acceptedif the last transition leads to a final state.

Example: accepting binary sequences
of the form 10101…01.

1

0

0 1

0,1

initial final
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Finite State Machines as Accepters
This is an important idea in Computing Science. Examples and
applications occur in many places:
• searching for a particular string in a text file
• recognising programming language keywords, in a compiler
• studying the power of formal models of computation (which sets of

strings can be recognised by a FSM?)

For more information, consult any book with “formal languages” or
“automata” in the title.
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The Mathematical Definition
Mathematically, an accepting finite state machine of the kind we have
just illustrated, is defined by the following.

a finite set       of statesQ

a finite set       of symbols, called the input alphabetΣ
a function                              called the transition functionQQ →Σ×:δ
a state                  called the initial stateQq ∈0

a set                  of final statesQF ⊆

(You are not expected to know this for the exam; but it is important to
be familiar with the informal idea of a FSM.)
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Synchronous Systems
Sequential circuits are usually synchronous, which means that their
behaviour is controlled by a clock. The clock is a signal which
oscillates between 0 and 1.

Once per clock cycle the circuit changes state. The inputs are read,
their values are combined with the state information to produce outputs
and a new state, and the state is updated.

Typical microprocessors are synchronous. The clock speed (in MHz,
now moved into GHz) is an often-quoted measure of the processor’s
performance, although it is not the only factor influencing overall
execution speed. (1 MHz = 1 million cycles per second; 1GHz =
1 billion cycles per second.) 
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Asynchronous Systems
The alternative to a synchronous system is an asynchronoussystem.
An asynchronous system has no clock; everything happens as quickly
as possible. In principle, however rapidly the inputs change, the
outputs will keep up; in practice there are physical limits on the speed.

Asynchronous systems are much more difficult to design, but they do
have some advantages, such as low power consumption and low RF
interference. Asynchronous microprocessors have been produced
(e.g. the Amulet series from Manchester University) and are becoming
of interest for application areas such as mobile telephones.

The design of asynchronous systems is an active research area. In this
course we will only consider synchronous systems.
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Registers
A basic component which allows state information to be stored in a
circuit: the register. We have seen the use of registers in assembly
language programming. Here is a 4 bit register as a component:

Q3 Q2 Q1 Q0

D3 D2 D1 D0
ResetClock

At each clock pulse (it is a synchronousregister), the values of the
inputs D3,D2,D1,D0 are stored in the register, replacing the previous
stored values. The outputs Q3,Q2,Q1,Q0 are the stored values.
The Reset input sets the stored value to 0000, asynchronously.
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Registers
Registers of any size work in the same way. A 32-bit CPU would use
32-bit registers, and so on.

The main memory of a computer (the RAM) can be thought of as a
large number of registers, with additional circuitry to enable any
desired register to be inspected or updated.

We’ll assume for the moment that registers are available, without
considering how they are implemented.
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Design of Sequential Circuits
The systematic design of sequential circuits is not part of the syllabus
of the course. However, looking at some examples will help us to
understand the design of CPUs (coming later).

Also, we can emphasise the link between finite state machines and
digital circuits.

Two examples:

1. a system which produces a sequence of outputs, driven by
a clock

2. the accepting finite state machine from Slide 9.
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The Prime Number Machine
The first example is a circuit which outputs the sequence
2, 3, 5, 7, 11, 13  as 4 bit binary numbers. The circuit will be driven by
a clock, so that each clock pulse causes the output to change to the next
number in the sequence, returning to 2 after 13. 

The sequence of outputs in binary is
0010, 0011, 0101, 0111, 1011, 1101

There are two possible approaches to the design, and we will look at
them both.
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PNM First Design
Idea: store the output word in a 4 bit register.
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PNM First Design
Assume that we have a 4 bit register as a standard component.
At each clock pulse, the values of the inputs D3,D2,D1,D0 are stored
in the register, replacing the previous stored values. The outputs
Q3,Q2,Q1,Q0 are the stored values. The Reset input sets the stored
value to 0000, asynchronously.

Q3 Q2 Q1 Q0

D3 D2 D1 D0
ResetClock
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PNM First Design
The Reset input will set the stored value to 0000, but this is not one of
the numbers in the sequence. Suppose we want Reset to make the
output be 0010. A simple solution is to invert the Q1 output.

Q3 Q2 Q1 Q0

D3 D2 D1 D0
ResetClock

not

outputThis means that the sequence of
values for Q3,Q2,Q1,Q0 is

0000, 0001, 0111, 0101, 1001, 1111
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Q3Q2Q1Q0D3D2D1D0
0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 1
0 0 1 0 X X X X
0 0 1 1
0 1 0 0
0 1 0 1 1 0 0 1
0 1 1 0
0 1 1 1 0 1 0 1

PNM First Design
All we need to do now is design a combinational circuit which inputs
Q3,Q2,Q1,Q0 and outputs D3,D2,D1,D0 (these are the values which
will be stored in the register at the nextclock cycle). 

Q3Q2Q1Q0D3D2D1D0
1 0 0 0
1 0 0 1 1 1 1 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1 0 0 0 0

X X X X

X X X X
X X X X

X X X X

X X X X
X X X X
X X X X
X X X X
X X X X
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PNM First Design
Karnaugh maps are a convenient way of handling the don’t care (X)
values. Leaving the X squares blank, we can cover the 1s with
rectangles which may also contain blank squares.

Karnaugh map for D3:

0
0 1 1

0 0

Q3 Q3

Q1

Q1

Q2 Q2Q2

Q0

Q0

Q0

)( 3213 QQQD +=
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PNM First Design
Karnaugh maps are a convenient way of handling the don’t care (X)
values. Leaving the X squares blank, we can cover the 1s with
rectangles which may also contain blank squares.

Karnaugh map for D2:

0
1 0 1

1 0

Q3 Q3

Q2 Q2Q2

Q0

Q0

31202 QQQQD +=Q0
Q1

Q1
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PNM First Design
Karnaugh maps are a convenient way of handling the don’t care (X)
values. Leaving the X squares blank, we can cover the 1s with
rectangles which may also contain blank squares.

Karnaugh map for D1:

0
1 0 1

0 0

Q3 Q3

Q2 Q2Q2

Q0

Q0

201 QQD =

Q0
Q1

Q1

Karnaugh map for D0:

1
1 1 1

1 0

Q3 Q3

Q2 Q2Q2

Q0

Q0

310 QQD +=

Q0
Q1

Q1
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PNM First Design
We end up with the following design (exercise: complete the circuit).

Q3 Q2 Q1 Q0

D3 D2 D1 D0
ResetClock

combinational
circuit

not

output
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Accepting FSM
Recall the transition diagram for the FSM which accepts binary
sequences of the form 10101…01.

1

0

0 1

0,1

initial accepting0100

10

We’ll use the same design technique as for the Prime Number Machine.
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Accepting FSM
There are 3 states so we need 2 bits of state information. We’ll use a
2 bit register with outputs (stored values) Q1,Q0 and inputs D1,D0.

There is another input: the current bit from the sequence. Call this I.

At each clock cycle, D1,D0 (which will
be the next state) are calculated from
Q1,Q0 and I. Here is the truth table:

Q1Q0 I D1D0
0 0 0 1 0
0 0 1 0 1
0 1 0 0 0
0 1 1
1 0 0
1 0 1 1 0
1 1 0
1 1 1 X X

X X

1 0
1 0Exercise: work out formulae for D1,D0

as usual.
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Accepting FSM
The final step is to add an output which will indicate whether or not
the FSM is in an accepting state.

As the accepting state is state 01, we have 01QQAccept=

Q1 Q0

D1 D0
ResetClock

combinational
circuit

Accept

I
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Another Example: A Multiplier
Suppose we want to multiply unsigned integers x and y, giving
result s. The following code:

s := 0;
i := y;
t := x;
while i > 0 do

s := s + t;
i := i - 1;

end while;

can be converted into a finite state machine and then into a
sequential circuit.
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Multiplier

initial final

This transition diagram represents the control flow of the program
(conditions, assignments):

s :=0; i := y; t := x;

i = 0
i > 0

s := s + t; i := i - 1;

0

1

2
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Multiplier
Suppose that x and y are 4 bits each, so that the result s is 8 bits.
The state of the circuit consists of
• a 4 bit register to store i
• a 4 bit register to store x (so we don’t have to assume that the input
signal is maintained)

• an 8 bit register to store s
• a 2 bit register to store the state of the controlling FSM.

The combinational logic must update the registers, depending on the
state:
• in state 0, load y into i, x into t, and 0 into s, and enter state 1
• in state 1 (if i > 0), load i-1 into i and s+t into s, and remain in state 1
• in state 1 (if i = 0), enter state 2
• in state 2, generate an output signal finished
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Multiplier
Exercise(challenging): complete the design of this multiplier circuit.

In contrast to the combinational multiplication circuit, whose size is
proportional to the square of the number of bits in the inputs, the size
of this circuit is proportional to the number of bits in the inputs.
However, the multiplication takes y +1 clock cycles to complete.

A better solution would be based on the following pseudocode:

s := 0; i := y; t := x;
while i > 0 do

if odd(i) then s := s + t end if;
i := i div 2; t := t * 2;

end while;
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End of Part One

On to second half of the notes...


