CS1Q Handout

CS1Q Computer Systems
Lecture 1

Prof. Chris Johnson

5141 Lilybank Gardens, Department of Computing Science, University of Glasgow, Scotland.
johnson@decs.gla.ac.uk. http://www.dcs.gla.ac.uk/~johnson

Notes prepared by Dr Simon Gay

Aims

» To understand computer systems at a
deeper level: general education for life
in a technological society.

» Foundation for further CS modules:

— Computer Systems 2

— Operating Systems 3

— Networked Systems Architecture 3
— Computer Architecture 4

Lecture 1 CS1Q Computer Systems

Books

» Essential: Computer Science
llluminated by N. Dale & J. Lewis.

» Supplementary notes will be produced.

» More detail on digital logic: one of

— Computers from Logic to Architecture by
R. D. Dowsing, F. W. D. Woodhams & I.
Marshall (also useful for Level 2 CS)

— Digital Fundamentals by T. Floyd

Lecture 1 CS1Q Computer Systems

Other Reading

» The New Turing Omnibus by A. K. Dewdney
— a tour through many and varied CS topics

¢ GOdel, Escher, Bach: An Eternal Golden Braid by
D. Hofstadter

— either love it or hate it: includes logic,

computability, programming fundamentals,
and much more

» Code by Charles Petzold
— excellent explanation of computing fundamentals

Lecture 1 CS1Q Computer Systems

CS1Q Handout

Course Plan

Preparatory reading will be assigned for each lecture -
some is necessary, some is for general interest.

Look at Moodle (navigate from the Level 1 CS
homepage) to find out the preparatory reading and othe
Information.

You will probably find it useful to make some notes durin
lectures.

Lecture 1 CS1Q Computer Systems 5

A Hierarchical View

Global computing: the Internet__
Networks and distributed computi
Application on a single comput
Operating System\\ _
Architecture S
Digital Logic \
Electronics
'Physics

Lecture 1 CS1Q Computer Systems 6

Information Processing

» Everything that computers do can be
described as information processing.

* Information is also processed by other
devices, e.g. CD player, television, video
recorder, ...

» Computers are programmable: the way
they process information can be changed.

» Computers represent information digitally.

Lecture 1 CS1Q Computer Systems 7

Digital Information

« Digital means represented by numbers.
Ultimately, binary numbers (0, 1) are
used.

» The alternative is an analog
representation, meaning that
information is represented by a
continuously variable physical quantity.

Lecture 1 CS1Q Computer Systems 8

CS1Q Handout

Examples of Analog Devices

« Traditional clock with hands

» Car speedometer with a needle

* Video tape recorder

» Record player (remember those?)
» Radio and television

 Traditional film camera

Lecture 1 CS1Q Computer Systems 9

Examples of Digital Devices

Digital watch

» Car speedometer with a digital display
DVD player/recorder

CD or MP3 player

Digital radio, digital television

Digital camera

Lecture 1 CS1Q Computer Systems 10

The Binary System

Thedecimalor base 1Gsystem uses digits 0,1,2,3,4,5,6,7,8,9.
Thecolumn valuesire powers of 10:
1000 100 10 1

_ means 2x10+4x10 +7x10 +6x10

Thebinary or base 2ystem uses digits 0,1.
Thecolumn valuesire powers of 2:

8 4 2 1

1101 =13,

Lecture 1 CS1Q Computer Systems 11

Why is binary used?

» Because it's easy to distinguish
between two states:
— high or low voltage
— presence or absence of electric charge
—a switch in the on or off position

Lecture 1 CS1Q Computer Systems 12

CS1Q Handout

Bits, Bytes and Words

A single binary digit is called kit. The value of a bitis 0 or 1.
A group of 8 bits is called layte

There are 256 different bytes, becaugg6= 2°
Larger collections of bits are calleebrds typically 16, 32 or 64.

16 bitwort: [NEENNIBE
32bitwors: FETER e
c4bivorc: [byie] byt Byt Byte Byte yiel yiel by

Lecture 1 CS1Q Computer Systems 13

How many bits?

» A computer might be described as “32 bit”,
which means that it uses 32 bit words.

» More bits means that more information can
be processed at once; also, more memory
can be used.

» Technology is moving from 32 to 64 bits
(although it's not clear that 64 bits are
necessary for most applications).

Lecture 1 CS1Q Computer Systems 14

How many different values?

An n bit word represents one op" different values.

8 256 2x10°
16 65 536 6x10°
24 16 777 216 10

32 | 4294967 296 4x10°
64 |gigantic numbg 2x10"

These values might be interpreted as numbers
(e.g. for 8 bits, a number from 0 to 256)
or in other ways (e.g. as part of an image).

Lecture 1 CS1Q Computer Systems 15

Can all information be
digitized?

* Yes, but we have to decide on a fixed number of bits,
resulting in loss of information.

« Example: if a digital speedometer stores the speed in 1
byte, then only 256 different speeds can be shown
(compared with an infinity of needle positions or speeds).

¢ Thisis enough for 0 - 128 mph in steps of 0.5 mph.

« Are we interested in any more accuracy? How accurately
could we judge the position of the needle? How
accurately is the speed being measured (physically) in
the first place?

Lecture 1 CS1Q Computer Systems 16

CS1Q Handout

Why Digital?

» So that all kinds of information can be stored and
processed in a uniform way. Examples:

—video and audio information can be stored on a
DVD (or a magnetic disc, or a computer memory)
and replayed using suitable software

— any digital information can be compressed or
encrypted using standard algorithms

» To exploit the distinguishability of 0 and 1

—e.g. digital radio suffers less from interference, and

bandwidth can be increased

Lecture 1 CS1Q Computer Systems 17

Information Representation:
Numerical

Positive integersstraightforward, use binary

« known range: easy, fixed number of bits for each numb
e.g. 16 bits give us the range 0..65535
(implemented in hardware; details lajer

« unlimited size: more complicated, work with sequences
of bytes {(mplemented in softwaye

Positive and negative integetsetwo’s complemer(iater)
Real numbergnon-integers): complicated, some details
next lecture.

Lecture 1 CS1Q Computer Systems

Information Representation:
Text

Fix the set of possible characters, decide on the appropriate numi
bits, and assign a binary number to each character. Text is repres
by a sequence of characters.

ASCII: the standard for many years. 128 characters, 7 bits each.
Later extended to an 8 bit format to include accents and more synj

ASCIl is biased towards the English language, and is being replad
Unicode, a 16 bit format with 65536 characters.

Documents are often represented in formats which are not plain tqg

E.g. Microsoft Word files and PDF files contain formatting informatj

images, tables etc.
Lecture 1

CS1Q Computer Systems 19

er of
nted

bols.

ed by

Xt.

Data Compression

It is often useful teompresdarge data files. The book describes thr
kinds of compression:

« keyword encoding

« run length encoding

« Huffman encoding

Another is Lempel-Ziv compression: similar to keyword encoding,
all repeated strings become keywords.

These are all examples lokslesr exactcompression: decompressi
takes us back where we started.

Inexactor lossycompression is often used for image and sound file

decompression does not result in exactly the original information,

this can be acceptable if the differences are too small to notice.
Lecture 1

CS1Q Computer Systems 20

e

put

CS1Q Handout

Run Length Encoding Puzzle

How does this sequence continue? 1
11
21
1211
111221
312211
13112221

Each line is a run length encoding of the line above. The increasin|
length of the lines illustrates the fact that run length encoding is ng
good at compressing data with many short runs.

Lecture 1 CS1Q Computer Systems 21

Information Representation:
Images

Straightforward idea: thieitmap a rectangular grid giixels(picture
elements). One bit per pixel gives a black and white image.

olo|o]o]e|o]o
o[o]o|o]e[o]o
olo]o|o]o[o]o
o[o|o|o]e[r]o
o|o|o|o[o|r|o
olo|oo]o[r]o

0
1
0
0
0
0
0

The whole image can be represented as a sequence of bytes: this
(in decimal) is 0, 31, 8, 8, 8, 8, 8.

Lecture 1 CS1Q Computer Systems 22

part

Information Representation:
Images

For more colours, use more bits per pixel. Here, for four colours,
two bits are needed per pixel.

The more pixels we use, and the more colours, the more detailed pnd

accurate the image can be (and the more space is needed to stor

Lecture 1 CS1Q Computer Systems 23

Digital Photography

An image is represented digitally by a gridpafels

The accuracy of the
colours depends on the
number of bits per pixel
(but how many colours ca
the eye perceive?)

Lecture 1 CS1Q Computer Systems 24

CS1Q Handout

Image Formats Image Formats
Up to 24 bits per pixel (giving over 16 million colours) is common. The JPEG (Joint Photographic Experts Group) format uses the
A compromise is to usealour palettefor a particular image, selec discrete cosine transformatida convert a bitmap into a representation
(say) 256 colours from the full range, then use 8 bits per pixel. based on combinations of waveforms. This glessybutadjustable
compression. A JPEG image must be converted back into a bitmgp in
Compression is important because images can be large files. Sorfie order to be displayed on screen or printed.

forms of lossless compression can work well: e.g. run length encqding
is good if there are large blocks of the same colour; this is true fo
some kinds of image.

JPEG is designed for good compression of images with smooth
colour variations - for example, many photographs. The inaccurady of
the compression tends to smooth things out even more. JPEG is hot so

GIF (Graphics Interchange Format) uses a bitmap representation|with good for images with sharp edges, such as line drawings.

8 bit colour (using a palette) and Lempel-Ziv-Welch compression
(lossless). It's particularly good for line drawings.

Lecture 1 CS1Q Computer Systems 25 Lecture 1 CS1Q Computer Systems 26
Information Representation: Information Representation:
Sound Sound
Sound is a waveform: The raw digital representation of the sound must be stored in a suftable
strength format. Two formats are important at the moment:

Audio CD: an exact encoding, suitable for recording onto
compact disk.

MP3(Moving Picture Experts Group, audio layer 3): usssy
compression to significantly reduce the size of audio files. The
. information lost during compression corresponds to parts of the sqund
time which would not be (very) noticeable to the humanlezssless
which can be sampled at some (suitably high) frequency compression (Huffman encoding) is then used for further shrinkag
and converted into a sequence of numbers (as accurately as we yant).
Playing the numbers through a digital-analog converter recovers $ound.
Lecture 1 CS1Q Computer Systems 27 Lecture 1 CS1Q Computer Systems 28

1

MP3 representation is about one tenth of the size of audio CD.

CS1Q Handout

Binary Numbers

We'll look at some details of the representation of numbers in bingry.
« unsigned integers (i.e. positive integers; this is probably revision
« signed integers (i.e. positive and negative integers)

« fractions
CSlQ Compl"Iter SyStemS « floating point numbers
Lecture 2
It's important to understand the binary representation of
unsigned and signed integers.
We won'’t be doing any work with floating point numbers, but it's
interesting to see some of the complexities.
Lecture 2 CS1Q Computer Systems 30
- - : Converting Decimal to Binar
Converting Binary to Decimal gMethod 1 y
Converting binary numbers to decimal is easy: just add|up
the values of the columns which contain 1. First work out how many bits are needed.
12864 32 16 8 4 2 1 If the number is at lea?” but less ti3H
=181 thenN+1 bits are needed.
12864 32 16 8 4 2 1 _ 108 Examples:
103 is at least 64 but less than 128; it needs 7 bits|
12864 32 16 8 4 2 1
=255 32 is at least 32 but less than 64; it needs 6 bits
257 is at least 256 but less than 512; it needs 9 bifs
1000 is at least 512 but less than 1024; it needs 10 bits
Lecture 2 CS1Q Computer Systems 31 Lecture 2 CS1Q Computer Systems 32

CS1Q Handout

Converting Decimal to Binary Converting Decimal to Binary
Method 1 Method 2

Work out the column values for the number of bits needed.

This method produces the binary digits from right to lef.
Example: 103, using 7 bits.

If the number is odd, enter 1 and subtract 1; if the numper

64 32 16 8 4 2 1 is even, enter 0. Divide the number by 2 and repeat.
Example: 237
Starting from the left, enter a 1 if the number is at least 12864 32 16 8 4 2 1

as big as the column value; otherwise 0. If 1 is entered

subtract the column value. Repeat for each column.
Check: 128+64+32+8+4+1 = 237.
More bits can be used: just put zeros in front.

12864 32 16 8 4 2 1

Lecture 2 CS1Q Computer Systems 33 Lecture 2 CS1Q Computer Systems 34

Hexadecimal Hexadecimal

Hexadecimal, also known agx is base 16.

Each digit represents a number from 0 to 15.

The letters Ato F (or a to f) are used for digits 1050
256 16 1

A hex number is best thought of as an abbreviation forfa
binary number.

The number of bits can easily be seen (4 times the number

=3x16° +12x16 +9x16’ =969 of hex digits) but the number itself is shorter.

Each hex digit corresponds to 4 bits:

Lecture 2 CS1Q Computer Systems 35 Lecture 2 CS1Q Computer Systems 36

CS1Q Handout

Addition in Binary

Just like in decimal: work from right to left, carrying to the next
column if necessary.

10101011 171
01001110 + 78
11111001 249
ST ey
Lecture 2 CS1Q Computer Systems 37

Working Within a Word Size

Usually a computer does addition on words of a fixed size.
A carry beyond the leftmost column is averflow; which might
be detectable, and the result is calculatediulo 25§with 8 bits).

10101011 171
01011110 + 94
00O0O0O01O0O01 9 instead of 265
11 1 1 1 1

265 divided by 256 = 1 remainder 9
With 16 bit words: addition modulo 65536, etc.

Lecture 2 CS1Q Computer Systems 38

Unsigned or Signed?

Everything we have said so far applieditsignechumbers: we are
simply working with positive integers.

]

If we want to work with both positive and negative integers then W
need to be able to distinguish between them: we sigeédnumbers.

We will now look at the representation of negative numbers in bingry.

Lecture 2 CS1Q Computer Systems 39

Negative Numbers in Binary

We need a representation of negative numbers in binary. On pa|
we might write

-10110, for -22
but how do we represent the minus sign within a byte or word?

The obvious idea is thegn-magnitude representation

1 means negative,
0 means positive
(thesign)

the normal representation of 22
(themagnitud¢

Lecture 2 CS1Q Computer Systems 40

ber

10

CS1Q Handout

Sign-Magnitude Doesn’t Work

Unfortunately the sign-magnitude representation makes arithmetti
difficult. Try -3 + 1 in a 4 bit sign-magnitude representation:

ic

101 1 -3

000 1 + 1
1100 -4 WRONG!
1 1

Straightforward addition of signed numbers gives incorrect resulfs.
Another problem is that there are two representations of zero:

(o [sle[olololala] -0
-0

Lecture 2 CS1Q Computer Systems 41

2s Complement Representation

Positive numbers have the normal binary representation.
To work out the representation of a negative number:

invert each bit (exchange 0 and 1)
add 1 to the result, ignoring overflow

Example: 8 bit 2s complement representation-o22

| invert

| add 1

Lecture 2 CS1Q Computer Systems 42

Facts about 2s Complement

Normal addition works for both positive and negative numbers.

1101 -3

0001 + 1

1110ﬁ—2 CORRECT!
1

linvert linvert

ladd 1 ladd 1

Lecture 2 CS1Q Computer Systems 43

Facts about 2s Complement

There is no difference between positive zero and negative zero|

| invert

| add 1, ignoring overflow

The leftmost bit is still a sign bit: 0 for positive, 1 for negative.
Whatever the word size, -1 is represented by a word full of 1s.

Lecture 2 CS1Q Computer Systems 44

11

CS1Q Handout

Facts about 2s Complement Converting to and from binary
Half the bit patterns represent positive numbers, half negative. When converting from decimal to binary it is important to know
With 8 bits we get numbers from -128 to +127. [bit patterd) whether we are producing a signed or unsigned representation. This is
usually obvious: if we are given a negative decimal number then Wwe

Here’s how it works with 3 bits:

=

| meaning as unsigned numbe must use the signed (two’s complement) representation.

0|0 1)1 meaning as
2s complement numby When converting from binary to decimal it is important to know

whether the given number is signed or unsigned.

-1)7 2|2
.. < ? .. 10101010 as an unsigned binary number means 170 in decimal.

-2] 6] 10101010 as a signed binary number means -86 in decimal
Some programming languages provide both signed and unsigned
integer types, and confusion can result. (Example: C)
Lecture 2 CS1Q Computer Systems 45 Lecture 2 CS1Q Computer Systems 46
Real Numbers in Binary Floating Point Numbers
Real numbers (i.e. non-integers) can be represented in binary in the For computational purposes we need a fixed-size representation of
same way as in decimal: the column values keep halving as we mpve real numbers. Fixing the number of digits before and after the
to the right. binary point would be too inflexible, so we u®ating pointnumbers.
12864 32 16 8 42 L L2 1i L8 a6 The basic idea is the same as standeiehtific notatiorin decimal:
° 2.5%102 = 2500

3.4x 10 = 0.000034

but we use powers of 2 instead of powers of 10, and express
everything in binary:

Example: 1011.110) = 11.8125

The familiar issues of decimal expansions also arise in binary:
different numbers have expansions of different lengths, some 1.01x 210 (binary) = 1.25 16 (decimal) = 20.
have recurring or non-recurring infinite expansions, and so on.
mantisseor fraction exponent

always 2

Lecture 2 CS1Q Computer Systems a7 Lecture 2 CS1Q Computer Systems a8

CS1Q Handout

Floating Point Numbers Example Floating Point Format
A particular floating point format will use a fixed number of bits for the exponent
mantissa, a fixed number of bits for the exponent, and one extra bjt to mantissa U6 18 14 172 1 2 4 8
represent the sign (O for positive, 1 for negative) of the overall nunfber. 0 0 0 0 0 0 0 0 0
Example let's use a 2 bit mantissa and a 3 bit exponent 0.25 0015629 003125| 00625 | 0125 | 025 | 08 L 2
0.5 0.03125(0.0625 | 0.125 0.25 0.5 1 2 4
The 2 bit mantissa gives 4 possibilities: 00, 01, 10, 11 and we will 0.75 0046875 0.09375] 0.01875| 0375 | 075 | 15 N 6
interpret these as 0.00, 0.01, 0.10 and 0.11 (in binary),]
i.e. 0,0.25, 0.5 and 0.75 (in decimal). Points to note:
« the 32 combinations only give 18 different values
The 3 bit exponent gives 8 possibilities and we will interpret theselas « the values are not evenly distributed
-4 ... +3.
Lecture 2 CS1Q Computer Systems 49 Lecture 2 CS1Q Computer Systems 50
IEE Floating Point Format Floating Point Numbers
The IEE floating point format avoids multiple representations, and However many bits we use for the mantissa and exponent
represents some special values (N@Nto help with error detection. (IEE single precision: 23 and 8; IEE double precision: 52 and 11)
The exponent is interpreted differently, and the interpretation of thie the following points are always true:
Imalr(]tls.?s deng.rtlds OT. the Valcl;g %ftthe expontent. Here’s how it wopld Only a finite set of numbers is available, whereas in
ook with a 2 bit mantissa an it éxponent. mathematical reality any range contains an infinite set of real nsbe
Areal number is represented by the nearest floating point numbejr;
exponent
usually this is only an approximation.
manissa 000 001 010 011 100 101 110 111 _ o _
00 o oz o5 1 2 " 3 - Floating pgmt ar|thmet|c does not qorrespopd exactly to _
01 00625 | 03125 | o625 | 125 25 B o NaN mathematlcal reality: numbers of dlﬁerent sizes do not mix well.
10 0125 | oars | 075 5 3 . = NaN E.g. in the IEE example, 12 + 0.25 = 12.
1 01875 | 0.4375 | 0875 | 175 | 35 ’ 14 | NaN Usually it is possible to be accurate enough for a given purpose, put:

Lecture 2 CS1Q Computer Systems 51 Lecture 2 CS1Q Computer Systems 52

CS1Q Handout

Floating Point Mathematics

Define the sequencea, by

11 _61
80_7 =

1130, 3000
a = o
2 11

L =111-
B a, a.a,

In anyfloating point format, no matter how many bits are used,
the sequence converges to 100.

In reality it converges to 6.

Lecture 2 CS1Q Computer Systems 53

CS1Q Computer Systems
Lecture 3

Where we are

Global computing: the Internet
Networks and distributed computing
Application on a single computer
Operating System
Architecture
Digital Logic \
Electronics
Physics

Lecture 3 CS1Q Computer Systems 55

Structure of a Computer

more...
buses

CPU - Central Processing Unit; microprocessor; e.g. Pentium 4
Memory - stores both programs and data

Peripherals - display, disk, keyboard, modem, printer, ...
Disk - larger, slower and more permanent than memory
Buses - pathways for information

Lecture 3 CS1Q Computer Systems 56

14

CS1Q Handout

CPU Architecture

The CPU is in control. It executes individual instructions.
The CPU does not execute program statements directly.
The CPU has its own machine language which is simpler,

but general enough that programs can be translated into it.

Why?
— The CPU does not force the use of any one high-level
language.

— It's more efficient to design and manufacture a general-
purpose machine, rather than one for each language.

Lecture 3 CS1Q Computer Systems 57

» A wide variety of CPUs are in use today:

* Most of the world’s CPUs are not in PCs!

Which CPU?

— The Intel family (486, Pentium, Pentium 2, P3, P4,...)
« popular in desktop computers
— The 64-bit Intel family (Itanium)
« popular in high-performance workstations and servers
— The PowerPC range
« used in Apple computers: iMac, PowerBook, etc
— The ARM range
« used in handheld computers, embedded systems
— DSP (digital signal processors), integrated
microcontrollers, ...

Lecture 3 CS1Q Computer Systems 58

The IT Machine

« A simplified CPU, whose design shares many
features of modern real CPUs.

* We can understand its operation in detail,
without getting bogged down in complexity.

+ We have a software emulator, so we can run
programs in the lab.

¢ We'll compare the IT machine with some real
CPU designs later.

Lecture 3 CS1Q Computer Systems 59

Registers: The ITM’s Variables

The ITM has 16egisters which are like variables.

Each register can store a 16 bit value. Their names are RO - R{.

(Register RO always stores the value 0 and cannot be changeq.

LDVAL and ADD instructions allow basic calculations.
animmediate value

LDVAL R1 ,$0001‘/

R1:=1;
R2:=2; LDVAL R2,$0002
R3:= R1 + R2; ADD R3,R1,R2
combination of addition
and assignment
Lecture 3 CS1Q Computer Systems 60

v

15

CS1Q Handout

Working with Registers
Rf RI The ALU
e
Rd
Sg » The Arithmetic and Logic Unit is a
Ra subsystem of the CPU.
22 » The ALU carries out operations such as
ADD R3,R1,R2 R7 addition, subtraction, comparisons, ...
R6 X . .
R5 when required by instructions such as
R4 ADD.
R2
ALU R1
RO
Lecture 3 CS1Q Computer Systems 61 Lecture 3 CS1Q Computer Systems 62
Memory Assembly Language and

« The registers are not sufficient fetoring large
amounts of data. So the ITM haemory

« The memory is like an array of 16 bit words. Each
location(element) has aaddresgindex).

e The ITM is a 16 bit machine, so a memory address|
is a 16 bit word. Therefore the maximum memory
size is 65536 words.

¢ As well as storing data, the memory stores the
instructions which make up a program.

« In practice, (most of) the memory is outside the CPU.

Lecture 3 CS1Q Computer Systems 63

Machine Language

Instructions such as ADD R3,R1,R2 arassembly language
Assembly language is a human-readable formathine language

Machine language is a binary representation of instructions.
ADD R3,R1,R2

assembly language
machine language (binary]
machine language (hex)

It is the machine language form which is stored in memory.

Lecture 3 CS1Q Computer Systems 64

16

CS1Q Handout

The Stored Program
Computer

 Storing the program in memory, in the same
way as data, is one of the most important
ideas in computing.

« It allows great flexibility, and means that
programs which manipulate programs (e.g.
compilers) are conceptually no different from
programs which manipulate data.

Execution of a Program

Instructions are executed in sequence, starting with the instructi
in memory location 0.

A special register, therogram counte(PC), stores the address of
the instruction being executed.

Example:
R1:=5; LDVAL R1,$0005
R2:=3; LDVAL R2,$0003

R3:=2*R1 + R2; LDVAL R4,$0002
MUL R5,R1,R4

ADD R3,R5,R2

Lecture 3 CS1Q Computer Systems 65 Lecture 3 CS1Q Computer Systems 66

Registers ALl Memory Assembly Language
Address_Contents .

Rf Programming

Re « Itis rarely necessary to program in assembly

Rd language.

Rb « Assembly language programs are produced

gg by systematic (and automatic) translation of

RS programs in high level languages (e.g. Ada).

R7 . ;)

RG Instruction We will look at how some common high level

R5 _ constructs are translated.

2‘3‘ « Compiler writers must understand assembly

R2 language.

sé » CPUs are designed with compilers in mind.

Lecture 3 CS1Q Computer Systems 67 Lecture 3 CS1Q Computer Systems 68

17

CS1Q Handout

Using Memory

To use the memory, we must refer toaallress In assembly
language we can usdabelinstead of a numerical address.
Alabel is just a name, similar to a variable name.

LOAD R3, x[R0]
- T explaniater

label of memory location

any register

If we think of the label x as the name of a variable (the value of

=

is

variable is stored in the memory location labelled by x) this meaps:

Writing to Memory

The instruction STORE, with a similar format to LOAD, changes|

the contents of a memory location.

STORE, R3,x[R0]
< _

any register
label of memory location

Again thinking of x as the name of a variable, this means:

X :=R3;
R3:=x;
Lecture 3 CS1Q Computer Systems 69 Lecture 3 CS1Q Computer Systems 70
Example Example
We can translate a fragment of code into assembly language: Now translate the statements. We need to use registers, becausq

=5 onlythe LOAD and STORE instructions can access memory.

y:=3; LDVAL R6, $0005 >-

Z:=2%+y; STORE R6, X[RO]
LDVAL R6, $0003

Declare the labels X, y, z, initialising the variables to 0:

x DATA $0000
y DATA $0000
z DATA $0000

DATA is not a machine language instruction. It just tells the

assemblefwhich translates assembly language to machine langpiage)

to allocate space in memory.

Lecture 3 CS1Q Computer Systems 71

STORE R6, y[RO]

LOAD R1,x[R0] —RLE=X
LOAD a3 —
LDVAL R4,$0002

MUL R5, R1, R4

STORE R3, Z[RO] p———

Lecture 3 CS1Q Computer Systems 72

18

CS1Q Handout

N <

A Complete Program
LDVAL R6, $0005

STORE R6, X[RO]
LDVAL R6, $0003
STORE R6, Y[RO]
LOAD R1, x[RO]
LOAD R2, y[RO]
LDVAL R4, $0002
MUL R5, R1, R4
ADD R3, R5, R2
STORE R3, Z[RO]
CALL exit[RO]
DATA $0000
DATA $0000
DATA $0000

Lecture 3 CS1Q Computer Systems

73

Program and Data in Memory

—

[——— LOAD Rz, }{R0]

[——— CALL exit[R0]

Lecture 3 CS1Q Computer Systems 74

Optimizations

¢ There are ways of improving this program by
making it shorter.

¢ Compilers use a variety of techniques to
produce optimized (as good as possible)
code.

« We won't worry about this issue - we'll just
concentrate on a straightforward and
systematic translation of simple Ada
statements into assembly language.

Lecture 3 CS1Q Computer Systems

75

CS1Q Computer Systems
Lecture 4

19

CS1Q Handout

) . .
What's Missing?

So far, we can write a simple sequence of instructions which arg

executed from the beginning to the end.

This is not sufficient to translatenditional statementsr loops

In both cases, some statements may or may not be executed,
depending on a condition.

if x>5 while x < 10 do
theny := begin
endif X = X+1;
end;
p

Aloop requires the ability to return to a previous point.

Lecture 4 CS1Q Computer Systems 77

Unconditional Jump

The JUMP instruction causes execution to jump to a different
instruction.

JUMP label[RO]
/

label of a memory location explain soon...

Executing this JUMP instruction sets the program counter (PC)
to labelinstead of to the address of the next instruction.

Example: LDVAL R1, $0001
LDVAL R2, $0000
loop ADD R2, R2, R1
JUMP loop[RO]
Lecture 4 CS1Q Computer Systems 78

Conditional Jumps

The ITM has twaconditional jumpnstructions.

jump if true any register
Think of 1 as a representation of the boolean value
and 0 as a representation of the boolean \ialse

n

JUMPF RL, label[R0]

jump if false any register n

Lecture 4 CS1Q Computer Systems 79

Comparison Operators

compare equal CMPEQ R1, R2, R3
~ 1

any registers

compare less CMPLT R1,R2,R3
~ 1

any registers

compare greater CMPGT R1, R2, R3
~ 1

any registers

Lecture 4 CS1Q Computer Systems 80

20

CS1Q Handout

Translating if-then-else

Using a combination of conditional and unconditional jumps,

Translating a while loop

Again using conditional and unconditional jumps, we can translate

we can translate an if-then-else statement into assembly langugge. a while loop into assembly language.
if RL<R2 CMPLT R3, R1, R2 while R1<10 loop loop LDVAL R2, $000a
then statement: JUMPF R3, else[R0O] statements CMPLT R3, R1, R2
else statement: translation of statements1 end loop; JUMPF R3, end[RO]
end if; JUMR end[RO] more statements translation of statements
more statements else translation of statements2 JUMP, loop[RO]
end translation of more statement: end translation of more statement:
Lecture 4 CS1Q Computer Systems 81 Lecture 4 CS1Q Computer Systems 82
Example: Sum of Integers Translating to Assembly Language
The following code calculates, #g1the sum of the integers from We will use register R1 for the variabieand R2 for the variabke
1ton.
s:=0; s:=0; LDVAL R2, $0000
while n > 0 loop while n > 0 loop loop LDVAL R3, $0000
Si=s+n; Si=s+n; CMPGT R4, R1, R3
n:=n-1; n:=n-1; JUMPF R4, end[RO]
end loop; end loop; ADD R2, R2, R1
LDVAL R5, $0001
We can translate this code systematically into assembly language. ?LLJJSP Fl' R1, RS
) , N - . oop[RO]
First we'll do it using registers for the variabkandn. o
Lecture 4 CS1Q Computer Systems 83 Lecture 4 CS1Q Computer Systems 84

21

CS1Q Handout

Optimizations

Afew simple techniques can make this code shorter and faster.
We won't worry about optimization when writing code by hand,
but a good compiler uses many optimization techniques.

Register RO always holds 0 and can be used whenever thg
value 0 is needed.

Instead of LDVAL R3, $0000
CMPGT R4, R1, R3
we can write CMPGT R4, R1, RO
Lecture 4 CS1Q Computer Systems 85

Optimizations

In this program, R5 is just used to hold the value 1 so that it can
subtracted from R1. We can just set R5 to 1 at the beginning,
instead of doing it in every iteration of the loop.

LDVAL R2, $0000 LDVAL R2, $0000

loop LDVAL R3, $0000 LDVAL R5, $0001
CMPGT R4,R1, R3 loop CMPGT R4, R1, RO
JUMPF R4, end[R0] JUMPF R4, end[RO!
ADD R2, R2, R1 ADD R2, R2, R1
LDVAL R5, $0001 SuUB R1,R1, R5
SuB R1, R1, R5 JUMP loop[RO]
JUMP loop[RO] end

end
This is calledcode hoistingMoving code out of a loop increases sp

Lecture 4 CS1Q Computer Systems 86

be

bed.

Storing Variables in Memory

LDVAL R2, $0000
STORE R2, s[RO]

. . loop LOAD R1, n[RO]
s:=0; LDVAL R3, $0000
while n > 0 loop CMPGT R4,R1, R3

= | JUMPF R4, end[R0]
=S LOAD R1, n[RO]
n:i=n-1; LOAD R2, S[RO]
end loop; ADD R2, R2, R1
STORE R2, s[RO]
LDVAL R5, $0001
LOAD R1, n[RO]
SuB R1,R1,R5
STORE R1, n[RO]
JUMP loop[RO]
end
s DATA 0000
n DATA 2222
Lecture 4 CS1Q Computer Systems 87

Optimizations

¢ Again there are ways of making this program
shorter or faster.

« The most obvious is to transfer s and n into
registers at the beginning, do all the calculation,
then transfer the final values back to memory.

« Working in registers is faster, but only a limited
number are available. The compiler must decide
which variables to store in registers and which in
memory.

« This requires analysis of when registers can be
reused.

Lecture 4 CS1Q Computer Systems 88

22

CS1Q Handout

Example: Multiplication Multiplication

The ITM has an instruction for multiplication, but if it didn’t, we
could easily write a program for it.

.)) o . % This is a comment

To multiply a by b, leaving the result in: (assumingd is positive) %Rl=a,R2=b,R3=c,R4=1

LDVAL R3, $0000 % c := 0

c:=0;
g LDVAL R4,$0001 % R4 :=1
while b > 0 loo !
ci=c +F;. loop CMPGT R5, R2, R0 % R5 := (b > 0)
b=b-1: JUMPF R5, end % if not(b > 0) then exit loop
i Ioop: ' ADD R3,R3,R1%c:=c+a
! SuUB R2,R2,R4%b:=b-1
L " JUMP loop[RO] % go to top of loop
Multiplication is just repeated addition. end
Lecture 4 CS1Q Computer Systems 89 Lecture 4 CS1Q Computer Systems 90
Using Memory Locations Indexed Addressing
We have been writing references to memory locations in the form The general form of a reference to a memory location is
label[RO] X[R]
Examples: wherex is a label andR is any register. This refers to the
LOAD R1, label[RO] to transfer data memory location at address+ R.
STORE R1, label[RO] to and from memory o o
This is calledndexed addressing is called théaseand
JUMP label[R0] R is called thendex
abe ; ;
JUMPT label[RO] :)oojimg :ﬁeap?gfgrr:nqt Up to now we have just used RO, whose value is always 0.
JUMPE label[RO] X[RO] just refers to the memory location at address
It's time to explain exactly what this means: whjrR@mentioned By using other registers, we can implemamays
when we are just interested in the memory locdtibel?
Lecture 4 CS1Q Computer Systems 91 Lecture 4 CS1Q Computer Systems 92

CS1Q Handout

Indexed Addressing and Arrays

LDVAL R1,$0005 [CRE=51]

LDVAL R2, $0002
STORE R1, a[R2]

a DATA $0000.—— [addiessis a
DATA $0000,__1 a sequence of memofy
locations, starting at

DATA $0000 addrocs

DATA $0000_ 3

Lecture 4 CS1Q Computer Systems 93

Array and While Loop

%R1=i,R2=10,R3=1

LDVAL
LDVAL
LDVAL
loop CMPLT
JUMPF
STORE
ADD
JUMP
end

Lecture 4

R1,$0000 %i:=0;

R2, $000a % R2:=10;

R3, $0001 % R3:=1;
R4,R1,R2 % R4 := (i < 10);

R4, end[R0O] % if not (i < 10) then exit loop;

R1, a[R1] % ali] :=1i;
R1,R1,R3 %i:=i+1;

loop[RO] % go to top of while loop;

CS1Q Computer Systems

94

Largest Element of an Array

Find the largest value in an arrayassuming that the end of the arrpy
is marked by the value -1.

max = a[0] e fistclement is
i=1;
while a[i] <> -1 loop
if afi] > max .
end if;
i=i+1;
end loop;

Lecture 4 CS1Q Computer Systems 95

Largest Element of an Arra

% R1 =max, R2 =i, R3=-1, R4 =1, R5 = a[i]

LDVAL
LDVAL
LOAD
LDVAL
loop LOAD
CMPEQ
JUMPT
CMPGT
JUMPF
ADD
endif ADD
JUMP
end CALL
a DATA
DATA
DATA
Lecture 4

R3, $ffff % R3:=-1
R4, $0001 % R4 := 1
R1, a[RO] % max := a[0]
R2, $0001 % i:=1
R5, a[R2] % R5 := ali]
R6, R5, R3 % R6 := (a[i] = -
R6, end[R0] % if a[i] = -1 then exit loop
R7, R5, R1 % R7 := (a[i] > max)
R7, endif[R0] % if a[i] <= max then end if
R1, R5, RO % max := afi] + 0
R2,R2,R4%i:=i+1
loop[RO] % go to top of while loop
exit[RO] % stop
$0002 % values in array a
$0005

$ffff % indicates end of array a
CS1Q Computer Systems

96

24

CS1Q Handout

Indexed Addressing and Jumps

In general the target address of a jump instruction is calculated fi
an index register and a base value:

JUMP Xx[R]
This allows, in effect, a jump to an address which is found in an §

We won't consider this further, but you might like to try to think of
situations in which it can be useful.

Lecture 4 CS1Q Computer Systems 97

om

rray.

Instruction Formats

« Each assembly language instruction has a
binary representation: either 1 or 2 16-bit
words.

» The first word is structured as 4 fields of 4 bits
each.

* The second word represents the value of a
label (written #label) or a numerical value, if
the instruction contains one.

Lecture 4 CS1Q Computer Systems 98

Instruction Formats

LOAD Ru, label[Rv] [TTulv]O][_ #abel |-
LDVAL Ru, $number [ZIiGI0NI0N I nAtmbery

ADD Ru, Ry, Rw [3Tulvw]

SUB Ru, Ry, Rw [4Tulv]w]

NEG Ru, Rv
MUL Ru, Rv, Rw [6TulvIw]

STORE Ru, label[Rv] 7NN [HEel —

ed
same format

CS1Q Computer Systems 99

Lecture 4

Instruction Formats

CMPEQ Ru,Rv,Rw [SHIGNANG
[TulvIw]
[aTulvIwl]

CMPLT Ru, Rv, Rw
CMPGT Ru, Rv, Rw

JUMPT Ru, label[Rv] [[BIR0NANOY [Ebely —
JUMPF Ru, label[Rv] [ICIRGNAN0Y [¥abely —
JUMP label[Ru] [dluloT0] [#abel - |
CALL label[Ru] [elulO0[0][#abel]—
RETRN [flolol0]
Similar format to LOAD/STORE
Lecture 4 CS1Q Computer Systems 100

25

CS1Q Handout

Program Execution

At the heart of the CPUs operation is a loop known as the
fetch-decode-execute cycler the fetch-execute cycle

FETCH transfer a word from memory (at the address indicated by
the PC (program counter) into the CPU.

DECODE work out which instruction it is, and which parts of the
CPU must be used to execute it.

EXECUTE activate the necessary parts of the CPU. Memory might
be accessed again.

Then the PC must be updated: to point either to the next instructipn
in sequence, or to the target address of a jump.

Lecture 4 CS1Q Computer Systems 101

A Bit of History

The first microprocessor was developed in the early 1970s, by Intd
Through the 1970s and 1980s, CPUs became more and more co|
along with developments in IC manufacturing technology.

By the late 1980s, instruction sets were enormously complex and
therefore difficult to implement. But studies showed that most prod
made little use of the more complex instructions, basically becaus
hard for compilers to take advantage of special-purpose instructio

hplex,

rams
b it's
NS.

This led to the development of RISC (reduced instruction set comgputer)

CPUs, aiming to implement a small and simple instruction set very
efficiently. The traditional designs were characterized as CISCs
(complex instruction set computers).

Lecture 4 CS1Q Computer Systems 102

The IT Machine vs. Real CPUs

The IT machine has many features typical of RISC designs:

- few instructions, following even fewer patterns

- regularity: all registers are interchangeable

- load/store architecture: the only instructions affecting memoyy
are transfers to/from registers

- only one addressing mode: indexed addressing

In many ways the current Intel CPUs (Pentium X) are the culmination
of the CISC approach, but they are becoming more RISC-like
internally.

The problem of exploiting special-purpose instructions (e.g. MMX)
in compiler-generated code still exists.

Lecture 4 CS1Q Computer Systems 103

CS1Q Computer Systems
Lecture 5

26

CS1Q Handout

Where we are

Global computing: the Internet
Networks and distributed computing
Application on a single computer
Operating System

Architecture

Digital Logic ‘ -ail
Electronics

Physics

Lecture 5 CS1Q Computer Systems 105

Processing Digital Information

We'll start with some fundamental operations on binary digits an
work up to more complicated operations.

AND

If xandy are binary digits (either 0 or 1) then
XAND y

is a binary digit, defined by

XANDy=1 ifx=1andy=1
=0 otherwise

Lecture 5 CS1Q Computer Systems 106

The Truth Table for AND

If we think of the binary values &sie andfalseinstead of 1 and O
then AND has its ordinary meaning:

XAND vy is true ifxis true andy is true

A truth tablemakes the meaning explicit:

True/falsehigh/low, 1/0 are all alternatives. We will usually stick
to 1/0 in truth tables.

Lecture 5 CS1Q Computer Systems 107

Diagrammatic Representation

There is a conventional notation for diagrams in which the AND
operation is represented by:

y XARDY

To make it easier to draw diagrams, we might just use a labelled

box instead:

Lecture 5 CS1Q Computer Systems 108

27

CS1Q Handout

OR

If xandy are binary digits (either 0 or 1) then

X ORYy
is a binary digit, defined by XORy =1 ifx=1ory=1, or both
=0 otherwise
Truth table: Diagram:

X
yibf XORy

Lecture 5 CS1Q Computer Systems 109

Example: Majority Voting

Imagine that three people have to vote either Yes (represented by 1)
or No (represented by 0). The overall result is the majority decisipn.

If X, y, zstand for the three votes, andtands for the result, then

we can write
r=(xAND y) OR ffAND 2) OR AND x)

Diagrammatically:

This can be viewed ascircuit diagramand implemented
electronically. The components are then cdlbegic gates

Lecture 5 CS1Q Computer Systems 110

Example: Majority Voting

We can use a truth table to check that the circuit works.
4848 !

The resulr is 1 in the
four cases when two of
X, Y, zare 1.

Lecture 5 CS1Q Computer Systems 111

What We Have Defined

We have defined a function with three boolean (truth value)
arguments (inputs) and a boolean result (output). Mathematically
have L

majority: BxBxB - B
if Bis the set {0,1}. The truth table (columngsy, z, } shows the
result (an element @) for each combination of inputs
(each combination of inputs is an element®% BxB).

The truth table defines a subsetBxBx B)xB
correspond to the rows: ((0,0,0),0), ((0,0,1),0), etc. It is a relation
with attributesBxBxB aril

For each elemerfk,y,z)of BxBxB the relation contains exactly
tuple whose input attributes mat@hy,z) This property is what mak
itinto a function. The output attribute of this tuple is the rasult

Lecture 5 CS1Q Computer Systems 112

, we

whose elements

28

CS1Q Handout

Majority Voting

We can make use of the logical operations to express a majority
voting function.

function Majority(X, y, z : Boolean) return Boolean is
begin

return (x and y) or (y and z) or (z and x);
end Majority;

This gives a flavour dfiardware description languageshich are
used in preference to circuit diagrams for complex designs.

Lecture 5 CS1Q Computer Systems 113

NOT

It turns out that AND and OR are not sufficient to define all functi
on binary digits. (Because, any function constructed from AND a
OR must output 1 if all inputs are 1.) The missing ingredient is N

x —] >0— NOTx
X NOT x

Again, if we think in terms of truth values, NOT has its familiar
meaning.

ANOT gate is often called anverter.

Lecture 5 CS1Q Computer Systems 114

ns
d
DT.

(AND or OR) and NOT

By using AND, OR and NOT in combination, it is possible to defing
any desired function on binary numbers. We will see how to do thi
in a few lectures’ time.

Perhaps surprisingly, we only need NOT and qurgtof AND and OR.

Exercisework out the truth table for the following circuit and check
that it is equivalent to the OR function.

a
x
m
Z
¥ b

Lecture 5 CS1Q Computer Systems 115

OR from AND and NOT

a
x
m
Z
% b

Lecture 5 CS1Q Computer Systems 116

29

CS1Q Handout

AND from OR and NOT

Exercisecheck that this circuit is equivalent to the AND function.

a
x
E :ic
>—DCHZ
¥ b

Lecture 5 CS1Q Computer Systems 117

One Fundamental Operation

Even more remarkably, it is possible to build up all functions fron
combinations of just one operation: the NAND operation.

y X y
y T X y

NAND is short for NOT AND. We can check that

XxNAND y= NOT KAND y)

Lecture 5 CS1Q Computer Systems 118

NAND is Universal

Assuming that we have NAND, we can define the other operatior]
NOT x=xNAND x
XAND y=NOT (x NAND y) = (x NAND y) NAND (x NAND y)
XORy = (NOTX) NAND (NOTYy) = (x NAND x) NAND (y NAND y)

Exercisecheck these equations by constructing truth tables.

Lecture 5 CS1Q Computer Systems 119

2

Another Fundamental Operation

The NOR operation is also sufficient for building all functions.

X
y) > XNORy

NOR is short for NOT OR. We can check that

xNORy = NOT (ORY)

Lecture 5 CS1Q Computer Systems 120

30

CS1Q Handout

NOR is Universal

Assuming that we have NOR, we can define the other operationg:
NOT x=xNOR x
XORy=NOT XNORY) = (xNORy) NOR NORY)
XAND y= (NOTX) NOR (NOTy) = (xNORx) NOR (NORY)

Exercisecheck these equations by constructing truth tables.

XOR

If xandy are binary digits then x XOR y
is a binary digit, defined by
xXORy =1 if eitherx=1 ory =1, but not both
=0 otherwise

Truth table: Diagram:

X — X
y—)D* XXORYy

XOR isexclusive orOR isinclusive or

Exerciseprove that NAND and NOR are the only universal operatjons.
Lecture 5 CS1Q Computer Systems 121 Lecture 5 CS1Q Computer Systems 122

Implication is a logical operation although it is not used in digital
circuits.x =>y means Ximpliesy” or “if x theny” or
“if xis true thery is true”.

Example
If 2+2=5 then the moon is made of cheese.
If 2+2=5 then Glasgow is in Scotland.
If Glasgow is in Scotland then 2+2=5.
If Glasgow is in Scotland then 2+2=4.

x=>yis true if it is logically valid to deducgfrom x. It is true in all
casesxcepwhenxis true andy is false.

Note: x=>y does not mean thatcausey.

Lecture 5 CS1Q Computer Systems 123

CS1Q Computer Systems
Lecture 6

31

CS1Q Handout

Algebraic Notation

Writing AND, OR, NOT etc. is long-winded and tedious. We
generally use a more compact notation:

xy meansxAND y
x+y meansxORy

X means NOKX
xOy meansx XORYy

The operations can be combined to form algebraic expressions
representing logic functions.

Lecture 6 CS1Q Computer Systems 125

Examples of Algebraic Notation

The majority voting function from the last lecture can be written
Xy + yz+2zx

The expression
xX(y+2)

means XAND (yOR2)

x
|
Z
The expression

X(y+2)

means XAND NOT (yOR2)

N

and also xAND (yNOR?2) ;w
Z

Lecture 6 CS1Q Computer Sysweiis 126

Exercise

What is the meaning of this expression? Draw a circuit for this

function, and calculate the truth table. Which logical operation is
Xy +Xy
Lecture 6 CS1Q Computer Systems 127

t?

Multi-Input Gates

The AND and OR operations can be generalized to take any number

of inputs. Algebraically, we simply writeyzfor the three-input AND
of x, y andz. Similarly we writex+y+z for the three-input OR.

In circuit diagrams we use the same symbols as before, but with|
additional input wires:

T e S m)

Definitions: AND is true ifall the inputs are true; OR is true if
at least onef the inputs is true.

NAND and NOR can also be defined for any number of inputs, i
the obvious way.

Lecture 6 CS1Q Computer Systems 128

32

CS1Q Handout

Synthesis of Multi-Input Gates

An n-input AND or OR gate can be synthesized from 2-input gate|

the same type.

Exercise check this by using truth tables.

Exercise how many 2-input AND gates are needed to synthesize
n-input AND gate?

Exercise what happens if NAND or NOR gates are joined up like

Lecture 6 CS1Q Computer Systems 129

his?

Boolean Algebra

The algebraic properties of the logical operations were studied by
George Boole (1815-1864). As a result we haselean algebra
and the datatype Boolean.

The laws of boolean algebra can be used to rewrite expressions
involving the logical operations.

Negation is an involution X=X 1)
No contradictions XX =0 2)
AND is idempotent XX =X 3)
Lecture 6 CS1Q Computer Systems 130

Laws of Boolean Algebra

Excluded middle X+X=1 4)
OR is idempotent X+ X=X (5)
Zero law for AND x0=0 (6)
AND is commutative Xy = yx (@)
Unit law for AND xL=x 8)
OR is commutative X+y=y+Xx 9)
Unit law for OR Xx+0=x (10)
Distributive law X(y+2)=xy+xz (11)
Lecture 6 CS1Q Computer Systems 131

Laws of Boolean Algebra

One law for OR x+1=1 12)
OR s associative ~ X+(y+2)=(x+y)+z (13)
AND is associative X(y2) = (xy)z (14)
Distributive law X+yz=(X+y)(x+2) (15)

The associativity laws (13) and (14) justify writigzandx+y+z
for the 3-input versions of AND and OR: it doesn’t matter whethe
we interpreikyzasx(yz)or as(xy)z

The laws can be verified by thinking about the ordinary meaning
AND, OR and NOT, or by truth tables.

Lecture 6 CS1Q Computer Systems 132

of

33

CS1Q Handout

Example

To verify thatx(y+z) = xy + xzwe construct the truth tables for the
left and right hand sides of the equation, considering them both
functions ofx, y andz

2]

Lecture 6 CS1Q Computer Systems 133

Exercise

Using the laws of boolean algebra, show #yat x = x

Working out which law to use next requires some creativity.
Truth tables provide a straightforward, systematic way to check
equivalences.

Notice the similarity with the set membership tables used in the
Information Management section to verify set identities.

Lecture 6 CS1Q Computer Systems 134

De Morgan’s Laws

Two important laws relate AND, OR and NOT. They are named after
Augustus De Morgan (1806-1871).

NOT(XAND y) = (NOTx) OR (NOTY)
NOT(x ORY) = (NOTx) AND (NOTYy)

In algebraic notation:

VIR e
X+y=Xy
Lecture 6 CS1Q Computer Systems 135

Boolean Algebra in Programming

The laws of boolean algebra applyywherehat logical operations
are used. For example, the code

if (x=1) and (y=1)) or ((x=1) and (z=2)) then
whatever
end if;

is equivalent to
if (x=1) and ((y=1)) or (z=2)) then

whatever
end if;

Lecture 6 CS1Q Computer Systems 136

34

CS1Q Handout

Circuits from Truth Tables

« In Lecture 5 we constructed a logic circuit which
computes the majority voting function.

« The function was defined by an English

sentence, and | wrote down a logical expression

and then a circuit by thinking about the ordinary
meaning of the sentence.

¢ In general we need a more systematic approach.

* We’'ll use majority voting as an example, then
progress to functions such as addition.

« Start with the truth table as the definition of the
function to be implemented.

Lecture 6 CS1Q Computer Systems 137

Majority Voting Systematically

Forr to be 1, it must be the case that:

x=0 andy=1 andz=1
or

x=1 andy=0 andz=1
or

x=1 andy=1 andz=0
or

x=1 andy=1 andz=1

Lecture 6 CS1Q Computer Systems 138

Majority Voting Systematically

Alternatively, forr to be 1, it must be the case that

%=1 andy=1 andz=1]
or

x=1 andy=1 andz=1
or

x=1 andy=1 andz=1
or

x=1 andy=1 andz=1

Lecture 6 CS1Q Computer Systems 139

Majority Voting Systematically

Alternatively, forr to be 1, it must be the case that

Xyz=1
or
xXyz=1
or
xyz=1
or
xyz=1

Lecture 6 CS1Q Computer Systems 140

CS1Q Handout

Majority Voting Systematically
Rewriting one more time, we have discovered tha
| T = Xyz+XyZ+XyZ + Xyz

which gives the following circuit.
‘ LDC T I

Lecture 6 CS1Q Computer Systems 141

t:

Majority Voting Systematically

| T =Xyz+Xyz +XyZ + Xy |

The expressiongyzetc. are calledninterms

The formula forr is said to be isum of productform,
for obvious reasons.

With n variables there ar@" possible minterms. Each mintern|
involves alln variables, and each variable is either negat¢a(
not negated (jus{).

Lecture 6 CS1Q Computer Systems 142

Minterms and the Truth Table

Each minterm corresponds to one row
of the truth table, i.e. to one combination
of values (0 or 1) of the variables.

The minterm corresponds to the row in
which the negated variables have value 0
and the non-negated variables have value

X X| X| X| X|
<< < <<l
NI N NI NN

The formula for consists of the minterms
corresponding to the truth table rows in
whichr = 1, ORed together.

X X X
<< K
N NI N

| T =Xyz+Xyz+XyZ + Xy |

Lecture 6 CS1Q Computer Systems 143

Structure of the Circuit

« Notice the structure of the circuit: NOT gates
to make negated inputs available, AND gates
to produce the required minterms, an OR
gate to produce the final output.

¢ In the same way we can construct a circuit for
any function.

¢ With m inputs, and n rows with output value
1: m NOT, n m-input AND, 1 n-input OR.

¢ This circuit is more complex than the original
majority voting circuit. We will have more to
say about this later.

Lecture 6 CS1Q Computer Systems 144

36

CS1Q Handout

Equality Test Equality Test
Suppose we want to design a circuit which implements the equallty The formula forr is the OR of the two minterms
test function on two inputs. That is, we want to compuate a functio corresponding to the rows in whicke 1.
of x andy, wherer will be 1 if xandy have the same value, and 0 if o
xandy have different values. Xy
Xy
For two variables there are 4 possible minterms, which correspornd to o Xy
the rows of the truth table as follows. The circuit: N Xy
Xy BN
Xy
Xy
Xy
Lecture 6 CS1Q Computer Systems 145 Lecture 6 CS1Q Computer Systems 146
Parity Parity
Theparity of a binary word is determined by the number of 1s in it The parity function for a 3 bit wondlyzis defined by the following

if it contains an odd number of 1s then the parity is Dol; truth table, which also shows the minterm for each row.
if it contains an even number of 1s then the parity is @\en.

(Mathematically the parity of a number is sometimes said twitle Xy Z The formula foipis the OR of the
for odd numbers aneivenfor even numbers. But for binary words, Xy z four minterms corresponding to the
parity is based on the number of 1s.) Xy z rows in whichp = 1.

Xy z
Example 1010 has even parity. 1101 has odd parity. Xy z | P=Xyz+XyZ+XyzZ+ xyz|

11111111 has even parity. 00101010 has odd parity. Xy z
Xy z
Xy 2

Lecture 6 CS1Q Computer Systems 147 Lecture 6 CS1Q Computer Systems 148

CS1Q Handout

Exercises

1. Draw a circuit for the parity function, in the same way that we g

for majority voting.

d

2. Find an equivalent circuit, which uses just two XOR gates. Prqve

that it is equivalent, both by truth tables and by using the laws of|
boolean algebra.

Lecture 6 CS1Q Computer Systems 149

Applications of Parity

Parity checking can be used for error detection, for example in
computer memory.

Suppose that each memory location stores an 8 bit word. A memory
device with parity checking would actually store 9 bits per word,
where the 9th bit is the parity of the original 8 bit word. The paritly
bit is calculated when a word is stored in memory.

lofa[s[ofa]a]s]o]1
[1[o[s]o]o[s]1]0[0

Lecture 6 CS1Q Computer Systems 150

Applications of Parity

When a 9 bit word is read from memory, its parity is calculated.
If a single bit within the word has been corrupted (changed from|
0to 1 or from 1 to 0) then the parity of the word will be odd.

‘corruption “corruption
[o[1[sfo]s[o[a]ols] [o[1]1]o[1]1[1]0]0]

parity is now odd parity is now odd

The computer can tell that a memory error has occurred (it could
because of a power fluctuation, for example) and do something
(but what?)

Lecture 6 CS1Q Computer Systems 151

be

Applications of Parity

The same idea can be used when transmitting data over a netwprk.
Instead of sending an 8 bit word, send a 9 bit word which includgs
a parity bit. The receiver can check the parity.

=

Parity checking cannot correct errors, because it is not possible|to
work out which bit was corrupted. In a networking application, th
corrupted word would be retransmitted.

]

Parity checking can only detect single bit errors, because if two pits

are changed then the parity remains the same. It might be acceptable

to assume that the probability of two errors in the same word is
small.

ery

Lecture 6 CS1Q Computer Systems 152

38

CS1Q Handout

Error Detection and Error Correction

In some applications, errors are inevitable and therefore it is esspntial
to be able t@orrect(not justdetec) errors. For example, radio
transmissions from spacecraft.

Simple codesend each bit three times. When receiving, calculate CSlQ CompUter SyStemS
a majority decision for each group of three bits. LeCtU re 7
0 send 000 receive001 mean0
1 send 111 receivel01meansl
and so on

This code can correct any single-bit error in each group of three
More sophisticatedrror correcting codegxist. The data transfer
rate is always reduced, but by how much?

Lecture 6 CS1Q Computer Systems 153

Simplifying Circuits Simplifying with Boolean Algebra
We have two different logical expressions for the majority voting o= _ i
function: — I = Xyz+ Xyz + Xyz + Xyz
=XYyz+ Xyz + XyZ + XYz + Xyz + Xy:z
| T = XYZ+XyZ+XyZ + Xy | = Xyz+ Xyz+ XyZ + XYz + XyZ + Xy:
They are equivalent, but the first is simpler: easier to understand, =YX+ Y2> + X2y + XZY+ XyZ + XYz
perhaps more efficient to implement. =yz(X+X)+xZ(V+ YY)+ xy(Z+ 2)

The more complex expression came from our systematic design = yZA+xZ+ xyl
technique. So we need a systematic simplification technique as well.

=Xy+Yyz+zx
We'll look at systematic simplification in a moment. But first,

here’s a non-systematic approach. Methodspotxyz + xyz factorizeasxy(z + z), simplify to xy.

Lecture 7 CS1Q Computer Systems

155 Lecture 7 CS1Q Computer Systems 156

CS1Q Handout

Karnaugh Maps

A Karnaugh mapor K-map, is an alternative representation of a
truth table, which makes it easy to spot when expressions of thq
form x+ X can be eliminated.

Example consider the function I =Xy+Yy
and lay out its truth table as a 2 by 2 grid.

y
1

X 0
X 1

This grid is the Karnaugh map for

o |

Karnaugh Maps

In the Karnaugh map, each square corresponds to one of the fou
combinations of values afandy. The values ok andy are shown
at the left hand side and along the top.

[l 4]

y

1 minterm
0 Xy

1

The rows are labelled wittX and , and the columnsyith y3
to show which axis corresponds to which variable and also to ind
which minterm corresponds to which square in the grid.

X X|

nd
cate

Lecture 7 CS1Q Computer Systems 157 Lecture 7 CS1Q Computer Systems 158
Karnaugh Maps Exercise
From the Karnaugh map, we can write down a formula byr Draw a Karnaugh map for the function
OR-ing together the minterms corresponding to the squares r=x+Xy
which contain 1. =Ry +xy vy
This can be factorised as _ _ 0 1
and therefore simplifies tor _ x 1
This is just what we did for the majority voting function, but now
notice that the presence ofX + X in the formula has a visua
interpretation: there are two adjacent 1s inythelumn, covering
boththe x andX squares.
Lecture 7 CS1Q Computer Systems 159 Lecture 7 CS1Q Computer Systems 160

40

CS1Q Handout

Simplification with K-Maps

Each square in the K-map corresponds to a minterm. Each 1 by 2

Simplification with K-Maps

: . . Example the function T =X+XYy
rectangle (either horizontal or vertical) corresponds to one of the ; .
. . has this K-map: _
variables, either negated or non-negated. yy
Any collection of squares and rectangles which cover all the 1s, = 0 1
corresponds to a logical formula for the function defined by the Kimap. : 2 -
By choosing a covering in which the rectangles are as large as))))
possible (maybe overlapping), we obtain the simplest formula. Different coverings of the 1s give different formulae.
(What do we mean by “simplest”? We are trying to minimise the Three squares: ' =Xy +Xy+Xy _
number of terms OR-ed together, and minimise the complexity of} Square and horizontal rectangle: I' =X+XYy
each term. This simplification process is often cafféedimisation) Square and vertical rectangle: =y +xY
Horizontal and vertical rectangles (shown)r = x+y
Lecture 7 CS1Q Computer Systems 161 Lecture 7 CS1Q Computer Systems 162
K-Maps for 3 Variables Labelling 3 Variable K Maps
The Karnaugh map for a function of 3 variables consists of a grid|of It is essential to label the rows and columns correctly, otherwise the
8 squares. Here is the K-map for the majority voting function. technique of finding overlapping rectangles does not work.
yyyy The 0s and 1s around the edges havg yyyy
X been omitted. Remember that a X
X negated label corresponds to 0 and § X
77 7 3 non-negated label to 1. 77 72 2

Notice that the negated appear in a different pattern from the It must be the case that any two adjacent squares (including “wrgpping
negateds. This means that again each square corresponds to onfe round” from top to bottom) have labels which differ by negation o
of the 8 minterms. exactly one variableThere are several labelling schemes which have

The three rectangles of 1s correspongytyzandxz OR-ing them
together gives the simplified formula for majority voting:
Xy + Yz + Zx

CS1Q Computer Systems

Lecture 7 163

this property, but for safety you shoutfeemorise the labelling which
is used in the lecture notes

Lecture 7 CS1Q Computer Systems 164

41

CS1Q Handout

Another Example

We will use a Karnaugh map to minimise the formula

XZ +XyZ + yz+ Xyz

The remaining squares are 0.

Lecture 7

CS1Q Computer Systems

Another Example

yyyy
X
. - . . X
First we fill in the K-map. The terms with two variables corresgonfl 7 7
2 by 1 rectangles, and the other terms are just squares. Zz 12
yyyy Now we can find collections of rectangles which cover the 1s.
X
X
Z 7 2 2

165 Lecture 7

CS1Q Computer Systems 166

Another Example

yyyy
X
X
Z 7 2 2
Now we can find collections of rectangles which cover the 1s
Three horizontal 2 by 1 rectanglexZ + Xy + Xz

Lecture 7

CS1Q Computer Systems 167

Another Example
yYyVyy
X
X
Z 7 2 2

Now we can find collections of rectangles which cover the 1s
Three horizontal 2 by 1 rectanglexZ + Xy + Xz
2 by 2 square and two 1 by 1 squardst XyZ + Xyz

Lecture 7

CS1Q Computer Systems 168

42

CS1Q Handout

Another Example
yyyy
X
X
Z 72 2
Now we can find collections of rectangles which cover the 1s.
Three horizontal 2 by 1 rectanglexZ + Xy + Xz
2 by 2 square and two 1 by 1 squardst XyZ + Xyz
Combining the two 1 by 1 squaresy + Xy

Another Example
yYyyYy
X
X
227 2z

Now we can find collections of rectangles which cover the 1s.

Three horizontal 2 by 1 rectanglexZ + Xy + Xz

2 by 2 square and two 1 by 1 squardst Xy Z + Xyz
Combining the two 1 by 1 squaresy + Xy

4 by 1 and 2 by 1 rectangles:X + Xy

Lecture 7 CS1Q Computer Systems 169 Lecture 7 CS1Q Computer Systems 170
Another Example Exercise
Yyyy In the same way, minimise the expression
X Xy+yz+Xyz
X
Z 7 2 2
Now we can find collections of rectangles which cover the 1s.
Three horizontal 2 by 1 rectanglexZ + Xy + Xz
2 by 2 square and two 1 by 1 squardst Xy Z + Xyz
Combining the two 1 by 1 squaresy + Xy
4 by 1 and 2 by 1 rectangles:X + Xy
4 by 1 rectangle and 2 by 2 squarex+y (the simplest formula)
Lecture 7 CS1Q Computer Systems 171 Lecture 7 CS1Q Computer Systems 172

43

CS1Q Handout

K-Maps for 4 Variables

A Karnaugh map for a function of 4 variabley, z, w uses the
following grid.

yyy

X X X| X
S| =5

227 2z
The left and right columns are adjacent. The top and bottom row|
are adjacent. Larger K-maps can be constructed (e.g. for 5 varial
take 2 copies of this K-map, one labelleand the other labelled)
but are less useful because it is more difficult to spot rectangles
Lecture 7

CS1Q Computer Systems 173

3

bles,

Example: Gray Code

Gray code is an alternative binary counting sequence. The Gray
sequence for 3 bits is as follows:

At each step, exactly one bit is changed, and
it is the rightmost bit such that a change produceq
a word which has not already occurred.

Exercise use this rule to work out the Gray code
sequence for other numbers of bits.

We will design a circuit to calculate the next 3 bit
Gray code. Given a 3 bit inpuyz the 3 bit output
X'y’ z' is the word which followsyzin the Gray
code sequence. For input 100 the output is 000.
Lecture 7

CS1Q Computer Systems 174

Code

Gray Code Truth Tables

By combining three truth tables we can showy’ andz’ as functions
of x, yandz

Lecture 7 CS1Q Computer Systems 175

Gray Code Karnaugh Maps

For each ok’, y’, 2’ we can draw a Karnaugh map and find a
minimised formula.

Forx': yyyy Forz: yyyy
X X
X X
Z 7 7 2 Z 7 2 2
Fory': X = VZ+XzZ
y=y+x
Z = xy+Xy

Lecture 7 CS1Q Computer Systems 176

44

CS1Q Handout

Gray Code Circuit

Notice that the expressioryZ occurs twice, so we can reduce the
size of the circuit by only calculating it once. Also notice that
7 =x[vy ,which means that if XOR gates are available then the

circuit car?/be simp:lified further. CSlQ Computer Systems
= Lecture 8

i

i y 2

Lecture 7 CS1Q Computer Systems 177

Traffic Lights Traffic Lights

Suppose we want to design a controller for a set of traffic lights. If we number the combinations 0 to 3, we can construct a truth taple.
British traffic lights have three lights, coloured red, amber and grgen.
There are four possible combinations of the lights: ‘
® Red @
@0 Red and Amber
. How should the input be fed into the circuit? One way is to use folr
® Green input wires, labelledd, d, d, d, .Toselect combinatiore

© Amber willinput 1 ond,, and 0 on the other inputs.
The first step is to design a circuit which has an input representing
which of the four combinations is required, and generates an output
(1 or O, representing on or off) for each of the three lights.
Lecture 8 CS1Q Computer Systems 179

Lecture 8 CS1Q Computer Systems 180

CS1Q Handout

Traffic Lights

Here is the truth table with tltkinputs. (It is not a complete truth

Reducing the Number of Inputs

tear |) Using 4 inputs to represent a choice of 4 combinations is inefficignt.
table because not all combinations of the inputs are listed.) If we write the combination number in binary then only 2 bits are
needed, and a 2 bit binary number corresponds to 2 input wires.
In general the difference is betweem inputs 2hd inputs
for representing a choice betwegf possibilities Bscomes
larger, this difference becomes more significant.
. . . If the 2 bit binary inputisi; i, then the truth table becomes:
Exercisetry to spot simple definitions for Red, Amber and Green
Lecture 8 CS1Q Computer Systems 181 Lecture 8 CS1Q Computer Systems 182
Exercise Decoders
Work out formulae for Red, Amber and Green. A decoder is a circuit which ha3 inputs ad outputs, and converts
a binary number on the inputs into a 1 on just one of the outputs.
A 2-4 decoder: and its truth table:
—— d3
il—
d42
il —
——dl
This can be done by using Karnaugh maps, but we can spot sony)
shortcuts. . .
We can immediately see that each output corresponds to one of thle

Lecture 8 CS1Q Computer Systems 183

four minterms:

3 =lilo d; =ijig
d, =i do =il
Lecture 8 CS1Q Computer Systems 184

46

CS1Q Handout

2-4 Decoder Circuit

The following circuit generates all four minterms from two inputs,
and implements the 2-4 decoder.

7Y

d3 d2 dl

;

do

Lecture 8 CS1Q Computer Systems 185

3-8 Decoder Circuit

Larger decoders can be implemented in the same way. Here is a
decoder.

Lecture 8 CS1Q Computer Systems 186

Traffic Lights with a Decoder

Using a 2-4 decoder, the circuit which generates traffic light
combinations is as follows.

& A mbet

dz Green

dl
d0

il—

L

Red

We no longer have to think about the problem of invalid inputs.

To complete the traffic light controller, we just need to make the in
cycle through the binary representations of the numbers 0,1,2,3.
will see how to do this later in the course.

Lecture 8 CS1Q Computer Systems 187

puts
Ve

Exercises

The smallest possible decoder is a 1-2 (1 input, 2 outputs). How
implemented?

How many components (inverters and AND gates) are needed to
an n—2" decoder? What if only 2-input (not larger) AND gates
used?

Lecture 8 CS1Q Computer Systems 188

s this

build
are

47

CS1Q Handout

Decoders with Enable 2-4 Decoder with Enable

A standard decoder typically has an additional input céieable TheEnableinput is fed into the AND gates which produce the outputs.
il
o a3 [>
‘-; . o2 i0
! ——dl >

Ehable — | —- Enable

11 1T 1T

If the Enableinput is 1 then the component works as a decoder. RH %j LH L[J
t 3 42 d1 do

If the Enableinput is 0 then the component is inactive. Exactly whg

this means depends on the details of the implementation, but for pow . . o
we can interpret it as meaning that all the outputs are 0. Many components have &mableinput which works in this way.
Sometimes the Enable inputastive high(as in this case); sometimg

it is active low

2]

CS1Q Computer Systems 190

Lecture 8 CS1Q Computer Systems 189 Lecture 8

Selecting Between Two Functions

Suppose we want a circuit which can do one of two things, depengding
on the value of a control input.

D . Example X ; r=xORy ifc=0
i0 T yﬂ =xXORy ifc=1

2-4 Decoder with Active Low Enable

c
Enable » . » »
I_ I_ I_ I_ function r(c, x, y : Boolean) return Boolean is
begin
if ¢ then return x XOR y
d3 d2 d1 do else return x OR y
end if;
endr;

Lecture 8 CS1Q Computer Systems 191 Lecture 8 CS1Q Computer Systems 192

CS1Q Handout

Our Standard Design Technique

We can design a circuit forin the usual way:

X X X X

c
C

YYvyy

I =Xy + Xy +Cx

but there are several problems with this approach.

Lecture 8 CS1Q Computer Systems 193

Problems

The final formula for doesn’t have the same structure as the origfnal

specification of the function. Where has ¥®Ry gone? If we
wanted to change OR to AND in the specificatiom,affe would have
to repeat the whole design process.

In a large system we might have complex circuits, computing fungtions

fandg, say, instead of OR and XOR. We don’t want to redesign
fandg into a new circuit which includes the functionality of both.

In order to work with large and complex designs, it is essential to
able to treat parts of the designbdeck boxesvhich are combined
in standard ways.

Lecture 8 CS1Q Computer Systems 194

pe

What We Really Want
We want to end up with a circuit which looks like this:
y —{or2]
y
==l

C

.) This is called

or more generally like this: amultiplexer

%]

3 f

=1 T

: =

2 c

Lecture 8 CS1Q Computer Systems 195

The 2-1 Multiplexer

The 2-1 multiplexer has 2 data inputs, 1 output, and a control inp|

i1
data inputs i MUX d output
i
c
control input
Specification: fe=0
thend =i0
elsed=il
endif
Lecture 8 CS1Q Computer Systems 196

—

49

CS1Q Handout

The 2-1 Multiplexer

Using the usual technique:

Lecture 8 CS1Q Computer Systems 197

The 2-1 Multiplexer

this is a 1-2 decoder

not

i1 and?2

d

0 land2

Lecture 8 CS1Q Computer Systems 198

A 4-1 Multiplexer

The 2-1 multiplexer is constructed from a 1-2 decoder, 2 AND gat
and an OR gate. Using the same structure we can make a 4-1

multiplexer. dw

DECODER

Larger multiplexers (in generaR” —1) are constructed similarly

Lecture 8 CS1Q Computer Systems 199

Multibit Multiplexers

The basi2" —1 multiplexer is a switch, allowing one2bf inpU
to be connected to the output. Each input consists of a single bit.

It is often necessary to consider a group of wires as a single sign|
For example, in a 32-bit microprocessor, all data is handled in blg
of 32 bits, which means that 32 wires are needed to carry a valug
one part of the circuit to another.

A collection of wires which form a single signal is callelous In
circuit diagrams, a bus is represented by a single line with a shor
diagonal line across it, labelled to indicatewhidth of the bus.

—_—
32

Lecture 8 CS1Q Computer Systems 200

2

cks
from

50

CS1Q Handout

Multibit Multiplexers Multiplexers and Logic Functions
It is often necessary to use multiplexers to switch whole buses. I oon g
diagrams, we simply draw a multiplexer as usual, with buses of Any logic function ofninputs can be implemented withd =)
width as inputs and output. Bus notation may also be used to ind|cate multiplexer. For example, for a 2 input logic function, call the inpyts
the width of the control input signal. x andy and the result, and let the truth table be, (b, c, dare each
i w either 0 or 1)
| |
i3 ‘/E
iz _},E
a0 —/3—_

This example shows a 4-1 multiplexer on a 32 bit bus. A 32 bit
multiplexer can be implemented with 32 basic multiplexers, all
sharing the same control inputs.

Lecture 8 CS1Q Computer Systems 201

Lecture 8 CS1Q Computer Systems 202
Multiplexers and Logic Functions Exercise
The previous slide shows how to implement any logic function of 2
OR inputs, by using a 4-1 multiplexer. It is actually possible to implenjent
0 the AND and OR functions with a 2-1 multiplexer. Work out how tp
The following circuit implements this function, 1 do this. Also work out how to use a 2-1 multiplexer to implement {he
because& andy, when connected to the control 1 NOT function.
inputs, select the correct row of the truth table. 1

1 d—s
% B _ iMUX —r
0 a—jo
T2
C
Lecture 8 CS1Q Computer Systems 203

Lecture 8 CS1Q Computer Systems 204

CS1Q Handout

Multiplexers and Logic Functions

Any logic function of 3 inputs can be implemented with a 4-1
multiplexer and an inverter, as follows.

Let the inputs be, y, z Conneck andy to the control inputs of the
multiplexer. For each combination of valuesxa@indy, one of the
following cases must apply.

* The output is 0, regardless of the value.of
« The output is 1, regardless of the value.of
« The output is equal to

« The output is equal tg

For each combination of values»ofindy, the multiplexer input which
is selected by that combination is connected to eitherz®riz ,
depending on which of the above cases applies.

Lecture 8 CS1Q Computer Systems 205

Example: Majority Voting

0 i
0 | |
Z —]
. 1 3
z z 2
z MUK
1 z 1
1 o——0

Lecture 8 CS1Q Computer Systems 206

Example: Parity

i
3
2 g 5
MK —u
1
a
Lecture 8 CS1Q Computer Systems 207

Multiplexer Applications

Using a multiplexer we can build a circuit which allows one of a

number of operations to be chosen, and applied to the inputs (thig is

where we started). For example, here is a circuit which gives a ¢

between AND and OP
—1
¥ hmux —d
il

For a choice between more operations, a larger multiplexer can K
used. More generally, multiplexers are used to give a choice bety
a number of different sources of data, not necessarily a number

different operations on the same data.
Lecture 8 CS1Q Computer Systems 208

oice

een

=1

52

CS1Q Handout

Multiplexer Applications

The same idea can be used for operations on multibit words. For
example, using 8 bit words, we just replace every wire (except thd
control wire) by an 8 bit bus.

3
T
] =l
¥ 8 MU= d
p

=

In this circuit, the AND operation is extended to 8 bit words by
operating on each bit position independently (and similarly OR):
e.g. 11010010 AND 01110110 = 01010010.

209

Lecture 8 CS1Q Computer Systems

Multiplexer Applications

A similar example, which is relevant to the exercises in Lab 3, is
calculating eithek AND y or xAND (NOT y), where agaix andy

are multibit values.
T)

L
MUK T d
o

These examples begin to show how the ALU of a microprocessor|
be implemented. We'll see more details later.

Lecture 8 CS1Q Computer Systems 210

Demultiplexers

A demultiplexer is the opposite of a multiplexer. There is one datg
input, whose value appears on one of the data outputs, dependin
the value of the control inputs. Here is a 1-4 demultiplexer.

—d3

—d2

—dl

—d0

1 —| DMK

cl <

If the control inputg1 cOrepresent the numbaiin binary, then the
value ofi is copied to outpudn. Depending on the details of the
electronic implementation, the other outputs might be 0, or might
in a disconnected state.

211

Lecture 8 CS1Q Computer Systems

g on

be

Demultiplexers

It is straightforward to implement a demultiplexer. The circuit use
decoder in a similar way to the implementation of a muliplexer.

i

d3
]
2 d2
DCDDEl
dl
Q
| do
cl <

Lecture 8 CS1Q Computer Systems 212

can

53

CS1Q Handout

CS1Q Computer Systems
Lecture 9

Addition

We want to be able to do arithmetic on computers and therefore
need circuits for arithmetic operations. Naturally, numbers will bg
represented in binary. We'll start with addition.

Recall that addition in binary is just like addition in decimal:

typical column—— 11101 13

0110 + 6

1.0/ 0 1 1 19
B - e

Each column: add three bits (two from the original numbers,
one carry input) and produce two bits (sum and carry output).

Lecture 9 CS1Q Computer Systems 214

Designing an Adder

Here is the truth table for the single bit addition function. The bits
being added areandy. The carry input i€in. The sum is and the
carry output iCout.

Notice that theCoutands columns,
interpreted as a 2 bit binary number,
are simply the sum of the y andCin
columns.

It turns out thaCoutis the majority
voting function from Lecture 5, and
sis the parity function from Lecture

Lecture 9

CS1Q Computer Systems 215

Implementing the Adder
We now know that s=x0y0Oc,
COUK = Xy+ yQH +CInX

SO we can construct a circuit:

T

A single bit adder is usually
represented like this:

k. S—

y— +

@h

H— cool

ol 5

Lecture 9 CS1Q Computer Systems 216

54

CS1Q Handout

Multi-Bit Addition Half Adders

In effect we have directly implemented additiorttokebinary digits.
Let's consider addition of just two digits, which is obviously more
fundamental, even though it does not directly correspond to the
original calculation.

Addition of multi-bit numbers is achieved e
by chaining single bit adders together. Here »3
is a 4 bit adder. The inputs a@ x2 x1 x0

andy3 y2 y1 yOThe output i$4 s3s2s1s0 42

(a5 bit number). 2 Adding two bitsx andy produces a sumand a carrg:

The carry out from each adder is fed into the
carry in of the next adder. The carry in of the ™!
adder for the least significant bit is setto 0. ¥

We can immediately see that

c=X
Note that the sum of twobit numbers can s= X)r] y
always be expressediirt1 bits: 50
if x<2"andy<2" then 0
X+y<2n +2n :2(n+1)
Lecture 9 CS1Q Computer Systems 217 Lecture 9 CS1Q Computer Systems 218

Half Adders Two Halves Make a Whole

The following circuit uses two half adders to implement a full add

C=Xy
s=x0y *— .
y—1 s
r—‘ cout
The half adder consists of an AND gate and an XOR gate: S — HA) P,
T — i —* Exercise use a truth table to check that this circuit is correct.
1 5

Lecture 9 CS1Q Computer Systems 219 Lecture 9 CS1Q Computer Systems 220

W

b

CS1Q Handout

Ripple Carry Subtraction

The electronic implementations of logic gates do not work To calculatex - ywe calculatex + (-y) where-y is calculated in the
instantaneously: when the inputs change there is a short delay, pérhaps| 2s complement representation by inverting all the bitsaofd then

a few picoseconds, before the outputs change. In our multi-bit addler, adding 1. A modification of the addition circuit does the trick: NO'
these delays accumulate because the carry bits have to propagat all gates do the inversion, and the 1 can easily be added by connedting
the way along the circuit. This adder design is caileple carry. the rightmost carry input to 1 instead of 0.

The more bits, the longer the delay.
The final carry output is ignored so that

Ripple carry delays would be very significant in a fast CPU. More we get a 4 bit result. When working with ~ **
sophisticated adder designs exist, which use various shortcuts to 2s complement numbers, the final carry
calculate carry bits without propagating them along the whole word. does not allow a 5 bit result to be produced.t
For more details, consult the books. ¥l

al
¥
1

Lecture 9 CS1Q Computer Systems 221 Lecture 9 CS1Q Computer Systems

An Add/Subtract Unit A Simple ALU

We can construct a circuit which either adds or subtracts, under the Using similar ideas, here is an ALU with 4 functions: add, subtract
control of an input signal. A 2-1 multiplexer is used to select eithe AND, OR.
plain or inverted values of the second input.

X

MUX
82 ADD ——— output AND o 1 1
Cin
MUX— output
y . \ data of any width ADD/SUB 0
32 MUX 4‘—|—‘— clcO
0 control signal also 0 0 add
gives correct Cin 0 1 sub
1 0 AND
control «—— 1 for subtract, 0 for add Xy cl 0 11 OR

Lecture 9 CS1Q Computer Systems 223 Lecture 9 CS1Q Computer Systems 224

CS1Q Handout

Other Mathematical Operations

There is a sequence of mathematical operations of increasing
complexity:

addition/subtraction

multiplication

division

square root

transcendental functionkg, sin, cos ...)

Where is the hardware/software boundary?

Lecture 9 CS1Q Computer Systems 225

Other Mathematical Operations

We have seen that integer addition and subtraction are easy to
implement in hardware.

We have also seen that integer multiplication is easy to implemen
in software (e.g. in assembly language for the IT Machine). More
complex mathematical operations can be implemented by more
complex software.

For simple CPUs (e.g. microprocessors of the late 1970s/early 19
such as the 6502 or Z80) this is a natural place for the
hardware/software boundary.

Modern microprocessors are more complex (e.g. Pentium 4 comy
transcendental functions for 128 bit floating point in hardware).

Lecture 9 CS1Q Computer Systems 226

80s,

utes

Multiplication

We can design a circuit for integer multiplication. If we multiplyptw
4 bit numbersx = X3 X, X % and y3y, Y, Ypthen the result is an 8 bit
numberz; 7 £ 52 ,21%.Z

XXY3¥ V1§ =X (px B4y x a4 +y X2 ty)
SXXYXBHXXY XA +XXY, X2 +XXY,
=(x0Oy) x8+ KkLy) x4+ xOy)x2+xy,

ey oDy [Bl ey [0 [T 0 [[0
D) x| (% Oy byl [0 [0]
Do Ol Do Oy Dy DOyl [0

6O o Oyl [Dp [aDl +

Lecture 9 CS1Q Computer Systems 227

Multiplication

Z |76

| carry out

%|Z|32 2Z 12 02

carry in :+ ‘

[T [T

AND y3 carn/ou! +
[T T 7T

X3 X % %

+

carry in = +

carry out

AND +
T T [
X% % % % 0
X3 X3 % %
Lecture 9 CS1Q Computer Systems 228

57

CS1Q Handout

Multiplication

Any calculation which can be done in a fixed number of steps can
converted into a circuit in a similar way. Such a circuit is faster ¢hg
software solution (but not instant). But the circuit may be large: fo
multiplication, the size of the circuit is proportional to fugiareof

the word length.

Key point: there’s a trade-off between execution time, and space
(area on the CPU chip). With older manufacturing technologies,
space was at a premium, therefore hardware operations stopped
addition. Nowadays, time is more significant.

In practice, a circuit for a complex operation such as division is m
likely to be designed asséate machine more details later.

Lecture 9 CS1Q Computer Systems 229

pre

CS1Q Computer Systems
Lecture 10

Combinational Circuits

All the circuits we have seen so far ammbinational meaning that
the output depends only on the present inputs, not on any previol
inputs. Combinational circuits have no memory, no state informat

Some circuits which we might want to build are obviously not
combinational.

« A traffic light controller must remember which point in the seque
has been reached.

* A CPU must remember which instruction it has to execute next.
(Also the contents of all the registers. The RAM is further state
information if we consider the computer as a whole.)

Lecture 10 CS1Q Computer Systems 231

on.

nce

Sequential Circuits

Circuits with memory are calleskquential Their general structure is|
shown by the following diagram.

MEMORY

INPUTS

COMBINATIONAL
LOGIC

OUTPUTS
To predict the behaviour of a sequential circuit, we need to know
which state it is in, and how the next state and the outputs depend
on the current state and the inputs.

Abstract view: thdinite state machinea very important conceptin C

Lecture 10 CS1Q Computer Systems 232

o7

58

CS1Q Handout

Finite State Machines Finite State Machines

Afinite state machine is a system which can be in one of a finite
number of states, and can change state. A change of state is callgd a
transition 000 001

L red @
Example traffic lights. .

/’ \ 111 010
Here there are four states,

d & amb
labelled with the lighting ~ 2™°¢"@ @ red & ambe

110 /. 011
combinations. We think of the \ /
transitions as being caused by . H

an external timer or clock. 101 100

Example 3 bit binary counter.

green

L - . Usually theinitial stateis specified: in this case, probably 000.
This is atransition diagram

Lecture 10 CS1Q Computer Systems 233 Lecture 10 CS1Q Computer Systems 234

Finite State Machines Finite State Machines

Afinite state machine is sometimes called a finite statematon
(plural: automatd, and often abbreviated to FSM or FSA.

An FSM is an abstract description or specification of a system wjth
several possible states: for example, a sequential circuit.

Example telephone.
conversationy, ; 4,91 hook ., .~ off hook

dial
There are many variations of the basic idea. We can consider pick up inggming \Put down
unlabelled transitions (as in the previous examples); labelled answer I
transitions in which the labels are viewed as inputs; outputs, whiI:h ringing conversation ringing
can be associated with either states or transitions; distinguiskesi|sta
with particular meanings. Transitions are labelled but we're not descrilfiogveach transition
FSMs pop up all over Computing Science. In fact, every computgr Is activated.))
is a FSM, although it is often convenient to pretend that computgrs Of course this example leaves out many details of the real teleph

have unlimited memory and an infinite number of possible stateq. system!

Lecture 10 CS1Q Computer Systems 235 Lecture 10 CS1Q Computer Systems 236

CS1Q Handout

Finite State Machines

Example web site.

Any web site can be viewed as a finite state machine. Each state
page, and each link is a transition to another state (page).

Exercise pick a web site and start to draw the transition diagram fi
the FSM which describes its structure.

(Actually, many web sites contain dynamically gexted pages which make it
difficult to describe them as FSMs, but there tenfan overall structure which
can be thought of as an FSM.)

This idea could help to answer questions like: Are all pages reach
Is it easy to return to the home page?
237

Lecture 10 CS1Q Computer Systems

=

able?

Finite State Machines as Accepters

A particular kind of FSMacceptsor recognisesertain input sequencgs.

Transitions are labelled with symbols fromiaput alphabet
One state is thimitial state and some states &ral or acceptingstateg

If a sequence of input symbols is fed into the FSM, causing transigions,
then the sequenceasceptedf the last transition leads to a final statp.

1

N
D fna

05

Example accepting binary sequences

of the form 10101...01. initial

Lecture 10 CS1Q Computer Systems 238

Finite State Machines as Accepters

This is an important idea in Computing Science. Examples and

applications occur in many places:

« searching for a particular string in a text file

« recognising programming language keywords, in a compiler

« studying the power of formal models of computation (which sets
strings can be recognised by a FSM?)

For more information, consult any book with “formal languages” 0|
“automata” in the title.

Lecture 10 CS1Q Computer Systems 239

The Mathematical Definition

Mathematically, an accepting finite state machine of the kind we Have

just illustrated, is defined by the following.
afinite setQ ostates

afinite set> of symbols, called tinput alphabet
afunction 5: Q%X - Q
astate 0, JQ

called thensition function
called timétial state
aset F[J Q dinal states

(You are not expected to know this for the exam; but it is importar]
be familiar with the informal idea of a FSM.)

Lecture 10 CS1Q Computer Systems 240

t to

60

CS1Q Handout

Synchronous Systems Asynchronous Systems
Sequ(—:"ntiallcircuits are usuaﬁynchronouswhich megns that 'their The alternative to a synchronous system iagymchronousystem.
beh.awour is controlled by a clock. The clock is a signal which An asynchronous system has no clock; everything happens as qliickly
oscillates between 0 and 1. as possible. In principle, however rapidly the inputs change, the

! outputs will keep up; in practice there are physical limits on the speed.
o .

Once per clock cycle the circuit changes state. The inputs are read, Asynchronous systems are much more difficult to desi_gn, but thely do
their values are combined with the state information to produce oltputs | Nave some advantages, such as low power consumption and low RF
and a new state, and the state is updated. interference. Asynchronous microprocessors have been producefl
) .) (e.g. the Amulet series from Manchester University) and are baggmi
Typical MICrOProcessors are synchronous. The clock speed (in Mz, of interest for application areas such as mobile telephones.
now moved into GHz) is an often-quoted measure of the processdr's
performance, although it is not the only factor influencing overall
execution speed. (1 MHz = 1 million cycles per second; 1GHz =
1 billion cycles per second.)

The design of asynchronous systems is an active research area.|In this
course we will only consider synchronous systems.

Lecture 10 CS1Q Computer Systems 241 Lecture 10 CS1Q Computer Systems 242

Registers Registers

A basic component which allows state information to be stored in Registers of any size work in the same way. A 32-bit CPU would yse
circuit: theregister We have seen the use of registers in assembly, 32-bit registers, and so on.
language programming. Here is a 4 bit register as a component:

[

i

The main memory of a computer (the RAM) can be thought of as
I I large number of registers, with additional circuitry to enable any

Q3 Q2 Q1 Q :))
N Closk Resek_ desired register to be inspected or updated.
D3 D2 D1 DO
T T 1 We'll assume for the moment that registers are availablapultit

considering how they are implemented.

At each clock pulse (it is synchronousegister), the values of the
inputs D3,D2,D1,D0 are stored in the register, replacing the previdqus
stored values. The outputs Q3,Q2,Q01,Q0 are the stored values.
The Reset input sets the stored value to 0000, asynchronously.

Lecture 10 CS1Q Computer Systems 243 Lecture 10 CS1Q Computer Systems 244

CS1Q Handout

Design of Sequential Circuits

The systematic design of sequential circuits is not part of thésgll
of the course. However, looking at some examples will help us to
understand the design of CPUs (coming later).

Also, we can emphasise the link between finite state machines a
digital circuits.

Two examples:

1. a system which produces a sequence of outputs, driven |
a clock
2. the accepting finite state machine from Slide 9.

Lecture 10 CS1Q Computer Systems 245

hd

The Prime Number Machine

The first example is a circuit which outputs the sequence

2,3,5,7,11, 13 as 4 bit binary numbers. The circuit will be drivep by

a clock, so that each clock pulse causes the output to change to the next

number in the sequence, returning to 2 after 13.

The sequence of outputs in binary is
0010, 0011, 0101, 0111, 1011, 1101

There are two possible approaches to the design, and we will loo|
them both.

Lecture 10 CS1Q Computer Systems 246

PNM First Design

Idea: store the output word in a 4 bit register.

OUTPUTS

+BIT REGISTER

Lecture 10 CS1Q Computer Systems 247

PNM First Design

Assume that we have a 4 bit register as a standard component.
At each clock pulse, the values of the inputs D3,D2,D1,D0 are std
in the register, replacing the previous stored values. The outputs
Q3,02,Q1,Q0 are the stored values. The Reset input sets the sto
value to 0000, asynchronously.

[
Q3 Q2 Q1 Q
Clock Reset—
D3 D2 D1 DO

Lecture 10 CS1Q Computer Systems 248

at

red

62

CS1Q Handout

PNM First Design

The Reset input will set the stored value to 0000, but this is not o
the numbers in the sequence. Suppose we want Reset to make tl
output be 0010. A simple solution is to invert the Q1 output.

This means that the sequence of output
values for Q3,Q2,Q1,Q0 is
not
0000, 0001, 0111, 0101, 1001, 1111
Q3 Q2 Q1 Q
—1{>Clock Reset—
D3 D2 D1 DO

Lecture 10 CS1Q Computer Systems 249

e of

PNM First Design

All we need to do now is design a combinational circuit which inplits
Q3,Q02,Q1,Q0 and outputs D3,D2,D1,D0 (these are the values which
will be stored in the register at thextclock cycle).

CS1Q Computer Systems 250

Lecture 10

PNM First Design

Karnaugh maps are a convenient way of handlingl¢imé care (X)
values. Leaving the X squares blank, we can cover the 1s with
rectangles which may also contain blank squares.

Karnaugh map for D3:

Q3 Q3

Q1 _
D, =Q(Q,+Qy)

Q1

Q2 Q2 Q2

Lecture 10 CS1Q Computer Systems 251

PNM First Design

Karnaugh maps are a convenient way of handlingl¢imé care (X)
values. Leaving the X squares blank, we can cover the 1s with
rectangles which may also contain blank squares.

Karnaugh map for D2:

Q3 Q3

Q0
Qo0
Qo0

Qt _
D, =QQ, +QQ,

Ql

Q2 Q2 Q2

Lecture 10 CS1Q Computer Systems 252

63

CS1Q Handout

PNM First Design

Karnaugh maps are a convenient way of handlingl¢imé care (X)
values. Leaving the X squares blank, we can cover the 1s with
rectangles which may also contain blank squares.

Karnaugh map for D1:

Q3 Q3

Karnaugh map for DO:
Q3 Q3

Qo0
Qo0
Qo

Qo0
Qo0

Q1 Q1

QL Q1

Q0
Q2 Q2 Q2
D, = Qo(jz

Lecture 10

Q2 Q2 Q2
D, =Q,+Q,

CS1Q Computer Systems

253

PNM First Design

We end up with the following desigexXercise complete the circuit).

output
no
— 1 |
Q3 Q2 Q1 Q combinational
—1{>Clock Reset— . it
D3 D2 D1 DO circul
| L=—F T |

Lecture 10 CS1Q Computer Systems 254

Accepting FSM

Recall the transition diagram for the FSM which accepts binary
sequences of the form 10101...01.

1
initial @ accepting
1
)
0s/

We'll use the same design technique as for the Prime Number M3

Lecture 10 CS1Q Computer Systems 255

chine.

Accepting FSM

There are 3 states so we need 2 bits of state information. We'll us|
2 bit register with outputs (stored values) Q1,Q0 and inputs D1,D¢.

There is another input: the current bit from the sequence. Call this|

At each clock cycle, D1,D0 (which will
be the next state) are calculated from
Q1,Q0 and I. Here is the truth table:

Exercise work out formulae for D1,D0
as usual.

Lecture 10 CS1Q Computer Systems 256

e a

64

CS1Q Handout

Accepting FSM

The final step is to add an output which will indicate whether or n
the FSM is in an accepting state.

As the accepting state is state 01, we havéccept= QQ,

Accept

1

Q1 QO combinational
—{>Clock Reset— Lo
D1 DO circuit
Lecture 10 CS1Q Computer Systems 257

Another Example: A Multiplier

Suppose we want to multiply unsigned integeasdy, giving

results. The following code:

=0;

Y

X

while i >0 do
S:=s+t;
i=i-1;

end while;

s
[
t:

can be converted into a finite state machine and then into a
sequential circuit.

Lecture 10 CS1Q Computer Systems 258

Multiplier

This transition diagram represents the control flow of the program
(conditions assignmenis

initial (0) @) final

-1,

s=s+ti=i-1

Lecture 10 CS1Q Computer Systems 259

Multiplier

Suppose that andy are 4 bits each, so that the resuitt 8 bits.

The state of the circuit consists of

«a 4 hit register to stoiie

a4 bit register to store(so we don’t have to assume that the inpu
signal is maintained)

« an 8 bit register to stoe

«a 2 hit register to store the state of the controlling FSM.

The combinational logic must update the registers, depending on
state:

«in state 0, loag intoi, xinto t, and 0 intcs, and enter state 1

«in state 1 (ifi > 0), loadi-1 intoi ands+t into s,and remain in state 1
«in state 1 (i = 0), enter state 2

«in state 2, generate an output sigivashed

Lecture 10 CS1Q Computer Systems 260

he

65

CS1Q Handout

Multiplier

s=0ji=y ti=x

while i >0 do
if odd(i) then s := s + t end if;
i=idiv2;t:=t*2;

end while;

Lecture 10 CS1Q Computer Systems

Exercisg(challenging): complete the design of this multiplier circuif.

In contrast to the combinational multiplication circuit, whose size i
proportional to the square of the number of bits in the inputs, the
of this circuit is proportional to the number of bits in the inputs.
However, the multiplication takest+1 clock cycles to complete.

A better solution would be based on the following pseudocode:

261

ze

Lecture 10

End of Part One

On to second half of the notes..

CS1Q Computer Systems

262

66

